6

Plastifikatsiyalangan akrilonitril (AN)-metil akrilat (MA) sopolimerlari asosidagi gel polimer elektrolitdan samarali natriy-oltingugurt batareyalari (Na-SB) uchun istiqbolli yechim sifatida taklif etilgan. Ushbu ishda, AN-MA sopolimer tarkibi va suyuq elektrolit miqdori optimallashtirilgan holda, ichki qarshiligi 1Omgacha bo‘lgan polimer elektrolitlar ishlab chiqilgan. Bu elektrolitlar natriy elektrodlarining yuzasiga “shuttle” effekti ta’sirida oqib o‘tuvchi oltingugurtni sezilarli darajada kamaytirib, elektrokimyoviy barqarorlikni oshirgan. Skanerli elektron mikroskopiya (SEM) va energiya dispersiv rentgen spektroskopiyasi (EDS) yordamida sopolimer va gel elektrolitning sirt tasviri va elementar tahlili amalga oshirildi. Gel elektrolit tarkibidagi suyuq elektrolitning ortishi bilan yuzaning tekislanishi (amorflanishi) ko‘rsatildi. Gel elektrolitda ortiqcha suyuq elektrolitning bo‘lishi “shuttle” effektini oshib ketishiga sabab bo‘lishi aniqlandi.

  • Read count 6
  • Date of publication 27-06-2025
  • Main LanguageO'zbek
  • Pages197-203
Ўзбек

Plastifikatsiyalangan akrilonitril (AN)-metil akrilat (MA) sopolimerlari asosidagi gel polimer elektrolitdan samarali natriy-oltingugurt batareyalari (Na-SB) uchun istiqbolli yechim sifatida taklif etilgan. Ushbu ishda, AN-MA sopolimer tarkibi va suyuq elektrolit miqdori optimallashtirilgan holda, ichki qarshiligi 1Omgacha bo‘lgan polimer elektrolitlar ishlab chiqilgan. Bu elektrolitlar natriy elektrodlarining yuzasiga “shuttle” effekti ta’sirida oqib o‘tuvchi oltingugurtni sezilarli darajada kamaytirib, elektrokimyoviy barqarorlikni oshirgan. Skanerli elektron mikroskopiya (SEM) va energiya dispersiv rentgen spektroskopiyasi (EDS) yordamida sopolimer va gel elektrolitning sirt tasviri va elementar tahlili amalga oshirildi. Gel elektrolit tarkibidagi suyuq elektrolitning ortishi bilan yuzaning tekislanishi (amorflanishi) ko‘rsatildi. Gel elektrolitda ortiqcha suyuq elektrolitning bo‘lishi “shuttle” effektini oshib ketishiga sabab bo‘lishi aniqlandi.

Русский

В качестве перспективного решения для эффективных натрий-серных аккумуляторов (Na-SB) предложен гелеобразный полимерный электролит на основе пластифицированных сополимеров акрилонитрила (AN) и метилакрилата (MA). В данной работе были разработаны полимерные электролиты с внутренним сопротивлением до 1 Ом путем оптимизации состава сополимера AN-MA и содержания жидкого электролита. Эти электролиты значительно уменьшили количество серы, поступающей на поверхность натриевых электродов за счет «челночного» эффекта, что повысило электрохимическую стабильность. Визуализация поверхности и элементный анализ сополимера и гелевого электролита проводились с использованием сканирующей электронной микроскопии (СЭМ) и энергодисперсионной рентгеновской спектроскопии (ЭДС). Было продемонстрировано сглаживание поверхности (аморфизация) при увеличении содержания жидкого электролита в геле-электролите. Было обнаружено, что присутствие слишком большого количества жидкого электролита в гелеобразном электролите приводит к усилению челночного эффекта.

English

A gel polymer electrolyte based on plasticized acrylonitrile (AN)-methyl acrylate (MA) copolymers is proposed as a promising solution for efficient sodium-sulfur batteries (Na-SB). In this work, polymer electrolytes with an internal resistance of up to 1 Ohm were developed by optimizing the AN-MA copolymer composition and the amount of liquid electrolyte. These electrolytes significantly reduced the sulfur migration to the surface of sodium electrodes due to the “shuttle” effect, increasing electrochemical stability. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to image the surface and perform elemental analysis of the copolymer and gel electrolyte. It was shown that the surface flattening (amorphization) occurred with an increase in the liquid electrolyte content of the gel electrolyte. It was found that the presence of excess liquid electrolyte in the gel electrolyte caused an increase in the “shuttle” effect.

Name of reference
1 1. Juraev , N., Mukhtorov , N., & Khakimov , F. (2024). ADVANCEMENTS IN TECHNOLOGIES FOR AIR POLLUTION MITIGATION. Академические исследования в современной науке, 3(41), 174–180. Retrieved from https://inlibrary.uz/index.php/arims/article/view/49744
2 2. Khakimov F. S., Mukhtorov N. S., Maksumova O. S. Environmentally friendly synthesis route of terpolymers derived from alkyl acrylates and their performance as additives for liquid hydrocarbon products //Journal of Polymer Research. – 2020. – Т. 27. – №. 10. – С. 304.
3 3. Farrukh K., Shakhnozakhon K., Oytura M. TECHNOLOGICAL REVIEW FOR USING POLYACRYLIC MEMBRANES IN FLUE GAS UTILIZATION //Universum: технические науки. – 2021. – №. 10-5 (91). – С. 59-64.
4 4. Хакимов Ф. Ш. и др. СОЗДАНИЕ БЕЗОТХОДНЫХ И ЭНЕРГОЭФФЕКТИВНЫХ ТЕХНОЛОГИЙ В ПРОЦЕССЕ ПЕРВИЧНОЙ ПЕРЕРАБОТКИ НЕФТИ (ЛИТЕРАТУРНЫЙ ОБЗОР) //Кислород. – Т. 2. – №. 209,460. – С. 20.946.
5 5. Khakimov F., Khamdamova S. S. LOCAL ELECTROLYTE FROM DEFOLIANT-DESICCANT //Education. – 2017. – Т. 2017.6. Xakimov F.Sh., O.Z.Turg‘unov, Sh.Sh.Xamdamva, O.S. Maksumova, Suv qattiqligining batareya qayta zaryadlanishiga ta'siri, Химическая технология и экология, Scientific-technical journal (STJ FerPI, ФарПИ ИТЖ, НТЖ ФерПИ, 2023,Т.27. спец.выпуск №16, -b. 192-196.
6 7. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (3) (2010) 587–603, https://doi.org/10.1021/cm901452z
7 8. A. Manthiram, Y.Z. Fu, Y.S. Su, Challenges and prospects of lithium-sulfur batteries, Accounts Chem. Res. 46 (5) (2013) 1125–1134, https://doi.org/10.1021/ar300179v
8 9. R.P. Fang, S.Y. Zhao, Z.H. Sun, W. Wang, H.M. Cheng, F. Li, More reliable lithiumsulfur batteries: status, solutions and prospects, Adv. Mater. 29 (48) (2017) 25, https://doi.org/10.1002/adma.201606823
9 10. L.L. Fan, N.P. Deng, J. Yan, Z.H. Li, W.M. Kang, B.W. Cheng, The recent research status quo and the prospect of electrolytes for lithium sulfur batteries, Chem. Eng. J. 369 (2019) 874–897, https://doi.org/10.1016/j.cej.2019.03.145
10 11. Y.B. He, Z. Chang, S.C. Wu, H.S. Zhou, Effective strategies for long-cycle life lithium-sulfur batteries, J. Mater. Chem. A 6 (15) (2018) 6155–6182, https://doi.org/10.1039/c8ta01115j
11 12. X. Zhu, Y. Ouyang, J. Chen, X. Zhu, X. Luo, F. Lai, H. Zhang, Y.-E. Miao, T. Liu, In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium–sulfur batteries, J. Mater. Chem. A 7 (7) (2019) 3253–3263, https://doi.org/10.1039/C8TA11397A
12 13. X. Luo, X. Lu, G. Zhou, X. Zhao, Y. Ouyang, X. Zhu, Y.-E. Miao, T. Liu, Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium–sulfur batteries, ACS Appl. Mater. Interfaces 10 (49) (2018) 42198–42206, https://doi.org/10.1021/acsami.8b10795
13 14. J. Yu et al., Dense and thin coating of gel polymer electrolyte on sulfur cathode toward high performance Li-sulfur battery, Composites Communications 19 (2020) 239–245, https://doi.org/10.1016/j.coco.2020.04.015
14 15. F.Sh. Xakimov, Sh.Sh. Xamdamova, O.S Maksumova, S.R. Mirsalimova, Neft-gazni qayta ishlash korxonalaridan chiqayotgan oltingugurt-ishqoriy kanalizatsiya suvini tozalash, O‘ZBEKISTON NEFT VA GAZ ILMIY-TEXNIKA JURNALI, 1/2025, 78-96
15 16. https://batteryuniversity.com/article/how-does-internal-resistance-affect-performance
16 17. https://learn.sparkfun.com/tutorials/measuring-internal-resistance-of-batteries/internal-resistance
17 18. Poutnik (https://physics.stackexchange.com/users/97690/poutnik), Inverse relationship between salinity and conductivity?, URL (version: 2023-10-03): https://physics.stackexchange.com/q/782911
18 19. O.V. Lonchakova, O.A. Semenikhin, et al., Electrochimica Acta, Volume 334, 135512, ISSN 0013-4686. (2020) https://doi.org/10.1016/j.electacta.2019.135512
19 20. K. Vijaya Kumar et al /Int.J. ChemTech Res.2014,6(13),pp 5214-5219.
Waiting