4

Mazkur maqolada vaqtli qatorlarning chiziqsiz trendlarini aniqlash, matematik modellash, regressiya usullari bilan trend tenglamalarini topish va bashoratlash kabi bosqichlar yoritilgan. Ayniqsa, iqtisodiy jarayonlarning murakkab dinamikasi hisobga olingan holda, eksponensial, logarifmik va polinomial modellarning ustun jihatlari tahlil qilingan. Amaliy misollar orqali bashorat natijalarining aniqligi va xatolik mezonlari ko‘rib chiqilgan.

  • Read count 4
  • Date of publication 27-06-2025
  • Main LanguageO'zbek
  • Pages253-258
Ўзбек

Mazkur maqolada vaqtli qatorlarning chiziqsiz trendlarini aniqlash, matematik modellash, regressiya usullari bilan trend tenglamalarini topish va bashoratlash kabi bosqichlar yoritilgan. Ayniqsa, iqtisodiy jarayonlarning murakkab dinamikasi hisobga olingan holda, eksponensial, logarifmik va polinomial modellarning ustun jihatlari tahlil qilingan. Amaliy misollar orqali bashorat natijalarining aniqligi va xatolik mezonlari ko‘rib chiqilgan.

Русский

В данной статье рассматриваются такие этапы, как определение нелинейных трендов временных рядов, математическое моделирование, нахождение и прогнозирование уравнений тренда с помощью методов регрессии. В частности, с учетом сложной динамики экономических процессов проанализированы преимущества экспоненциальных, логарифмических и полиномиальных моделей. На практических примерах рассмотрены критерии точности и погрешности результатов прогнозирования.

English

This article covers stages such as determining nonlinear trends of time series, mathematical modeling, finding trend equations using regression methods, and forecasting. In particular, taking into account the complex dynamics of economic processes, the advantages of exponential, logarithmic, and polynomial models were analyzed. The accuracy and error criteria of the forecast results are considered using practical examples.

Name of reference
1 Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), 307–327.
2 Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley, 712 p.
3 J. A. A Test for Independence Based on the Correlation Dimension. – Econometric Reviews, 1996. – 197–235 b.
4 Engle, R. F., & Granger, C. W. J. (1987) Co-integration and Error Correction: Representation, Estimation, and Testing. – Econometrica, – 251–276 b.
5 Granger, C. W. J. (1981) Some Properties of Time Series Data and Their Use in Econometric Model Specification. – Journal of Econometrics, – 121–130 b.
6 Gujarati, D. N. (2009) Basic Econometrics. – 5th Edition. – McGraw-Hill,. – 924 p.
7 Hamilton, J. D. (1994) Time Series Analysis. – Princeton University Press, – 799 b
8 To‘xtasinov Sh.T. (2020) Statistika va iqtisodiy tahlil. – Toshkent: Fan, – 320 b
9 Tsay, R. S. (2010) Analysis of Financial Time Series. – 3rd Edition. – Wiley, – 720 b.
10 Tursunov, B. X. (2017) Iqtisodiy jarayonlarni modellashtirish. – Toshkent: Iqtisodiyot, – 280.
Waiting