56

Mazkur maqolada umumiy sanoat ehtiyojlari uchun mo‘ljallangan 
qisqa tutashgan rotorli asinxron motor rotor chulg‘amining tirsak qismidagi 
sochilma magnit maydonini hisoblash va uni imitatsion model orqali tahlil 
qilish masalasi yoritilgan. Tadqiqot predmeti sifatida sochilma magnit maydoni 
o‘zgaruvchanligi, mavzusi sifatida esa uning matematik modeli va tajriba natijalari 
bilan solishtirilishi tanlangan. Ishning dolzarbligi asinxron motorlar ishlashidagi 
nosozliklarni erta aniqlashda sochilma magnit maydon diagnostikasining muhim 
ahamiyatga egaligi bilan izohlanadi. Tadqiqotning asosiy maqsadi – tirsak 
qismlardagi magnit maydonlarni aniqlash va aniqlik darajasi yuqori bo‘lgan 
model orqali ularni taqqoslashdir. Metod sifatida MATLAB Simulink muhitida 
qurilgan ortogonal koordinatalar (dq) asosidagi matematik model hamda 
tajriba o‘lchovlari qo‘llangan. Olingan natijalar havo oralig‘idagi magnit maydon 
amplitudalarining tajriba va model orasidagi o‘rtacha farqi 4,37 %ni tashkil 
etganini ko‘rsatadi. Bu esa modelning adekvatligini isbotlaydi. Tadqiqot natijalari 
diagnostika qurilmalari yaratishda, ayniqsa, podshipnik va fazaviy nosozliklarni 
aniqlashda amaliy qo‘llanishi mumkin. Yakuniy xulosa sifatida taklif etilgan qurilma 
va model yordamida asinxron motorning ish holatini aniqlash imkoniyatlari 
kengaytirilganligi qayd etilgan

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 12-06-2025
  • Read count 56
  • Date of publication 02-06-2025
  • Main LanguageO'zbek
  • Pages39-50
Ўзбек

Mazkur maqolada umumiy sanoat ehtiyojlari uchun mo‘ljallangan 
qisqa tutashgan rotorli asinxron motor rotor chulg‘amining tirsak qismidagi 
sochilma magnit maydonini hisoblash va uni imitatsion model orqali tahlil 
qilish masalasi yoritilgan. Tadqiqot predmeti sifatida sochilma magnit maydoni 
o‘zgaruvchanligi, mavzusi sifatida esa uning matematik modeli va tajriba natijalari 
bilan solishtirilishi tanlangan. Ishning dolzarbligi asinxron motorlar ishlashidagi 
nosozliklarni erta aniqlashda sochilma magnit maydon diagnostikasining muhim 
ahamiyatga egaligi bilan izohlanadi. Tadqiqotning asosiy maqsadi – tirsak 
qismlardagi magnit maydonlarni aniqlash va aniqlik darajasi yuqori bo‘lgan 
model orqali ularni taqqoslashdir. Metod sifatida MATLAB Simulink muhitida 
qurilgan ortogonal koordinatalar (dq) asosidagi matematik model hamda 
tajriba o‘lchovlari qo‘llangan. Olingan natijalar havo oralig‘idagi magnit maydon 
amplitudalarining tajriba va model orasidagi o‘rtacha farqi 4,37 %ni tashkil 
etganini ko‘rsatadi. Bu esa modelning adekvatligini isbotlaydi. Tadqiqot natijalari 
diagnostika qurilmalari yaratishda, ayniqsa, podshipnik va fazaviy nosozliklarni 
aniqlashda amaliy qo‘llanishi mumkin. Yakuniy xulosa sifatida taklif etilgan qurilma 
va model yordamida asinxron motorning ish holatini aniqlash imkoniyatlari 
kengaytirilganligi qayd etilgan

Русский

В данной статье рассматривается задача расчёта 
рассеянного магнитного поля в лобовой части обмотки короткозамкну-
того ротора асинхронного электродвигателя, предназначенного для 
общепромышленного применения, а также анализ этого поля с исполь-
зованием имитационной модели. В качестве предмета исследования 
выбрано изменение рассеянного магнитного поля, а в качестве цели 
– построение его математической модели и сопоставление с эксперимен-
тальными данными. Актуальность исследования обусловлена значи-
мостью диагностики рассеянного магнитного поля для раннего 
выявления неисправностей в работе асинхронных двигателей. Основная 
цель работы заключается в определении магнитных полей в лобовой 
части ротора и сравнении этих значений с результатами высокоточной 
модели. В качестве метода использованы математическая модель на 
основе ортогональных координат (dq), построенная в среде MATLAB 
Simulink, и экспериментальные измерения. Полученные результаты 
показывают, что среднее отклонение амплитуд магнитного поля в 
воздушном зазоре между моделью и экспериментом составляет 4,37 %, 
что подтверждает адекватность модели. Результаты исследования 
могут быть практически применены при разработке диагностических 
устройств, в частности, для обнаружения неисправностей подшипников 
и фазных сбоев. В качестве итогового вывода отмечено, что с помощью 
предложенного устройства и модели расширены возможности определения рабочего состояния асинхронного электродвигателя.

English

This article addresses the calculation of the stray magnetic field in the 
end-winding section of the rotor winding of a squirrel-cage asynchronous motor 
for general industrial use and its comparison with results obtained through a 
simulation model. The subject of the research is the stray magnetic field, while 
the focus lies on its mathematical modeling and correlation with experimental 
data. The relevance of the study stems from the importance of early diagnostics 
in the operational condition of asynchronous motors. The main objective is to 
determine variations in the rotor end-winding stray magnetic field and to develop 
a highly accurate model. The research methodology includes mathematical 
modeling using an orthogonal coordinate system (dq) in MATLAB Simulink, along 
with experimental measurements. Results indicate that the average deviation in 
the magnetic flux amplitude in the air gap between the model and experimental 
findings is 4.37%, confirming the adequacy of the developed model. Practitioners 
can practically apply the findings in the development of diagnostic tools, specifically 
for detecting bearing failures and phase loss. In conclusion, the proposed device 
and modeling approach enhance the diagnostic capabilities for assessing the 
operational state of asynchronous motors.

Author name position Name of organisation
1 Nizamov . . texnika fanlari boʻyicha falsafa doktori (PhD) Andijon davlat texnika instituti
2 Boixanov Z.U. texnika fanlari boʻyicha falsafa doktori (PhD), dotsent Andijon davlat texnika instituti
Name of reference
1 Ahmad, M. (2010). High performance AC drives: Modeling, analysis and control. Springer. https:// doi.org/10.1007/978-3-642-13150-9
2 Ahmatov, M. G., & Odilov, G. O. (1971). Eksperimental’noe opredelenie garmonicheskogo sostava polya v zazore i semeistv krivykh namagnichivaniya po pervoi garmonicheskoi potoka sinkhronnoi mashiny pri nepodvizhnom rotore [Experimental determination of the harmonic composition of the �ield in the gap and families of magnetization curves by the �irst harmonic of the �lux of a synchronous machine with a stationary rotor]. In Proceedings of the Academy of Sciences of the Uzbek SSR. Series of Technical Sciences (Vol. 4, pp. 21–24).
3 Ahmatov, M. G., Pirmatov, N. B., & Amanulla, A. H. (2000). Eksperimental’noe issledovanie magnitnogo polya v vozdushnom zazore sinkhronnoi mashiny dvukh osnogo vozbuzhdeniya [Experimental study of the magnetic �ield in the air gap of a dual-excitation synchronous machine]. Vestnik TashGTU – Bulletin of Tashkent State Technical University, (1), 94–95.
4 Allal, A., & Abderrahmane, K. (2021). Diagnosis of induction motor faults using the motor current normalized residual harmonic analysis method. International Journal of Electrical Power & Energy Systems, 140, 208–219.
5 Al-Musawi, A. K., Anayi, F., & Packianather, M. (2020). Three-phase induction motor fault detection based on thermal image segmentation. Infrared Physics & Technology, 104, 103140. https:// doi.org/10.1016/j.infrared.2019.103140
6 Boikhanov, Z. U. (2021). GES asinxron dvigatellarining nosimmetrik rejimlari [Asymmetric modes of HPP asynchronous motors]. O‘zbekgidroenergetika – Uzbekhydroenergetics, 2, 27–28.
7 Boikhanov, Z. U. (2022). Boshqariluvchan chiqish kuchlanishli tok o‘zgartkichlarining dinamik tavsiflari [Dynamic characteristics of controlled output voltage current converters]. Ilm-fan va innovatsion Rivojlanish – Nauka i innovatsionnoye razvitiye – Science and Innovative Development, 2. https://dx.doi.org/10.36522/21819
8 Boikhanov, Z. U. (2022). Effect of changes in the active resistance of stator windings of an asynchronous electric motor on the output signal of a three-phase current converter. Chemical Technology. Control and Management, 1(103), 48–52.
9 Bose, B. K. (2006). Power electronics and motor drives. Elsevier.
10 Chen, Z. G., Lei, T., Hua, Z. J., Ugli, B. Z. U., & Ugli, A. R. Y. (2024). Short-term photovoltaic power generation prediction based on VMD-IGWO-LSTM. In Proceedings of the 2024 IEEE 4th International Conference on Digital Twins and Parallel Intelligence (DTPI) (pp. 682–686). https://doi.org/10.1109/ DTPI61353.2024.10778814
11 Chiasson, J. (2005). Modeling and high-performance control of electric machines. Wiley-Interscience.
12 De Doncker, R. W., Pulle, D. W. J., & Veltman, A. (2011). Advanced electrical drives: Analysis, modeling, control. Springer. https://doi.org/10.1007/978-3-030-48977-9
13 Dos Santos, W. S., Torres, P. F., Brito, A. U., Galhardo, M. A. B., & Macêdo, W. N. (2020). A novel fuzzy controller for photovoltaic pumping systems driven by general-purpose frequency converters. Sustainable Energy Technologies and Assessments, 40, 100758. https://doi.org/10.1016/j. seta.2020.100758
14 Guedes, J. J., Castoldi, M. F., Goedtel, A., Agulhari, C. M., & Sanches, D. S. (2018). Parameters estimation of three-phase induction motors using differential evolution. Electric Power Systems Research, 154, 204–212.
15 Nizamov, J. A. (2023). Device for measuring the resulting magnetic field of the stator winding of asynchronous motor for general industrial application. In AIP Conference Proceedings (Vol. 3152, p. 050013). https://doi.org/10.1063/5.0218809
16 Pirmatov, N. B., Nizamov, J. A., & Ergashev, Sh. O. (2023). Magnetic field in the air gap of an induction motor: General inspection information applications. American Journal of Engineering and Technology, 5(11), 139–143.
17 R. N., J. (2019). Real and reactive power control of induction motor drive (Master’s thesis). Louisiana State University, 93–99.
18 Siddikov, I. Kh., Malikov, A., Makhsudov, M. T., Boikhanov, Z. U., & Uzaqov, R. (2022). Study of the static characteristics of the secondary stator voltage converter of the currents of an induction motor. In AIP Conference Proceedings (Vol. 2432, p. 020003). https://doi.org/10.1063/5.0089681
19 Tabatabaei, N. M., Aghbolaghi, A. J., Bizon, N., & Blaabjerg, F. (2017). Reactive power control in AC power systems: Fundamentals and current issues (pp. 634–637). Springer.
20 Toirov, O., Kamalov, T., Mirkhonov, U., Urokov, S., & Jumaeva, D. (2021a). The mathematical model and a block diagram of a synchronous motor compressor unit with a system of automatic control of the excitation. In Proceedings of the E3S Web of Conferences (SUSE-2021).
21 Toirov, O., Urokov, S., Mirkhonov, U., Afrisal, H., & Jumaeva, D. (2021b). Experimental study of the control of operating modes of a plate feeder based on a frequency-controlled electric drive. In Proceedings of the E3S Web of Conferences (SUSE-2021).
22 Zhu, R. C., & Zhan, D. Y. (2020). Fuel cell high efficiency power converter for suppressing low frequency current ripple. Procedia Computer Science, 166, 296–300. https://doi.org/10.1016/j.procs.2020.02.096
Waiting