Annotatsiya: Kirish. Yuqori darajadagi samaradorlik va fotoelektrik panellarning ishlab chiqargan elektr energiyasi va akkumulyator narxlarining tez pasayishi fotoelektrik panellarning umumiy elektr energiyasini ishlab chiqarishdagi ulushini oshib borishiga sabab boʻlmoqda.
Usul va materiallar. Quyosh energiyasini fotoelektrik modullar hisobida ishlab chiqarilgan elektr energiyasini zaxiralash uzluksiz elektr energiya taʼminotini optimallash uchun qulay tizimdir. Elektr energiyasini zaxiralash qoʻshimcha xarajatlar talab qilib, umumiy optimal xarajatlarni aniqlashni murakkablashtiradi. Mazkur maqolada akkumulyatorli va akkumulyatorsiz fotoelektrik tizimning ishlab chiqargan elektr energiya narxlari meʼyorlash orasidagi tafovut xarajatlari an’anaviy hisoblash usullari yordamida aniqlangan.
Natijalar. Fotoelektrik modullar yordamida ishlab chiqarilgan elektr energiyasi va uni yetkazib berish tarmoqlari oʻrtasidagi narxlar tarifi oʻrtasidagi bogʻliqlik hisoblab chiqilgan.
Xulosa. O‘zbekiston iqlim sharoitida quyosh energiyasini mahalliylashtirilgan ishlab chiqarish va iste’molini etkazib berishni yo‘qotmasdan ta’minlaydigan va akkumulyatorli quyosh elektr stansiyalariga qaraganda 2 baravar tezroq o‘z-o‘zini qoplaydigan kichik quvvatli quyosh elektr stansiyalarini joriy etish maqsadga muvofiqdir.
Annotatsiya: Kirish. Yuqori darajadagi samaradorlik va fotoelektrik panellarning ishlab chiqargan elektr energiyasi va akkumulyator narxlarining tez pasayishi fotoelektrik panellarning umumiy elektr energiyasini ishlab chiqarishdagi ulushini oshib borishiga sabab boʻlmoqda.
Usul va materiallar. Quyosh energiyasini fotoelektrik modullar hisobida ishlab chiqarilgan elektr energiyasini zaxiralash uzluksiz elektr energiya taʼminotini optimallash uchun qulay tizimdir. Elektr energiyasini zaxiralash qoʻshimcha xarajatlar talab qilib, umumiy optimal xarajatlarni aniqlashni murakkablashtiradi. Mazkur maqolada akkumulyatorli va akkumulyatorsiz fotoelektrik tizimning ishlab chiqargan elektr energiya narxlari meʼyorlash orasidagi tafovut xarajatlari an’anaviy hisoblash usullari yordamida aniqlangan.
Natijalar. Fotoelektrik modullar yordamida ishlab chiqarilgan elektr energiyasi va uni yetkazib berish tarmoqlari oʻrtasidagi narxlar tarifi oʻrtasidagi bogʻliqlik hisoblab chiqilgan.
Xulosa. O‘zbekiston iqlim sharoitida quyosh energiyasini mahalliylashtirilgan ishlab chiqarish va iste’molini etkazib berishni yo‘qotmasdan ta’minlaydigan va akkumulyatorli quyosh elektr stansiyalariga qaraganda 2 baravar tezroq o‘z-o‘zini qoplaydigan kichik quvvatli quyosh elektr stansiyalarini joriy etish maqsadga muvofiqdir.
Аннотация. Введение. Высокая эффективность фотоэлектрических панелей и стремительное снижение цен на аккумуляторы способствуют увеличению доли солнечной энергии в общем производстве электроэнергии.
Методы и материалы. Производство электроэнергии с помощью фотоэлектрических модулей и её накопление являются эффективным решением для обеспечения бесперебойного электроснабжения. Однако системы накопления требуют дополнительных затрат, что усложняет определение общих оптимальных расходов. В данной статье с помощью традиционных методов расчёта проанализированы различия в нормированной стоимости электроэнергии (LCOE), произведённой фотоэлектрическими системами с аккумуляторами и без них.
Результаты. Установлена экономическая взаимосвязь между стоимостью электроэнергии, производимой фотоэлектрическими модулями, и тарифами на передачу энергии по сетям.
Выводы. В климатических условиях Узбекистана целесообразно внедрение маломощных, локализованных солнечных электростанций, обеспечивающих надёжное энергоснабжение без потерь при передаче. Такие станции окупаются в два раза быстрее по сравнению с аккумуляторными солнечными электростанциями.
Abstract. Introduction. The high efficiency of photovoltaic panels and the rapid decrease in battery prices are contributing to the growing share of solar energy in overall electricity production.
Methods and Materials. Generating electricity using photovoltaic modules and storing it is an effective approach to ensure an uninterrupted power supply. However, storage systems require additional costs, complicating the determination of total optimal expenses. This paper analyzes the differences in the levelized cost of electricity (LCOE) generated by photovoltaic systems with and without batteries, using conventional calculation methods.
Results. An economic correlation was identified between the cost of electricity generated by photovoltaic modules and the tariffs for its transmission through power grids.
Conclusion. In Uzbekistan’s climatic conditions, it is advisable to implement small-scale, localized solar power plants that ensure reliable electricity delivery without transmission losses. These plants pay for themselves twice as fast compared to battery-based solar power systems.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Nasrullayev Y.Z. | doktorant | Qarshi davlat texnika universiteti |
2 | Komilov A.G. | t.f.d., k.i.x. | Qayta tiklanuvchi energiya manbalari milliy ilmiy tadqiqot instituti |
3 | Boboqulov Z.A. | magistrant | Qarshi davlat texnika universiteti |
4 | Ro'ziqulov G.Y. | t.f.f.d., dots. | Qarshi davlat texnika universiteti |
№ | Name of reference |
---|---|
1 | Green MA. Dunlop ED. Hohl‐Ebinger J. Yoshita M. Kopidakis N. Bothe K et al., “Solar cell efficiency tables (Version 60).,” doi: https://doi.org/10.1002/pip.3595. |
2 | IRENA, “Future of solar photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation: paper). |
3 | Yang Y. Bremner S. Menictas C. Kay M., “Battery energy storage system size determination in renewable energy systems:,” doi: https://doi.org/10.1016/j.rser.2018.03.047 |
4 | D. Akinyele, J. Belikov, and Y. Levron, “Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems,” Energies, vol. 10, no. 11, p. 1760, Nov. 2017, doi: 10.3390/en10111760. |
5 | J.-T. Liao, Y.-S. Chuang, H.-T. Yang, and M.-S. Tsai, “BESS-Sizing Optimization for Solar PV System Integration in Distribution Grid,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 85– 90, 2018, doi: 10.1016/j.ifacol.2018.11.682 |
6 | Jülch V. Telsnig T. Schulz M. Hartmann N. Thomsen J. Eltrop L. et al., “Holistic Comparative Analysis of Different Storage Systems using Levelized Cost of Storage and Life Cycle Indicators.,” doi: https://doi.org/10.1016/j.egypro.2015.07.553. |
7 | Metwally SH. Zhang X. Krishnamoorthy HS., “Solar PV and BESS based Home Energy System. 2019,” doi: https://doi.org/10.1109/TPEC.2019.8662202. |
8 | Hlal MI. Ramachandaramurthy VK. Sarhan A. Pouryekta A. Subramaniam U., “Optimum battery depth of discharge for off-grid solar PV/battery system.,” doi: https://doi.org/10.1016/j.est.2019.100999 |
9 | Wu D. Kintner-Meyer M. Yang T. Balducci P., “Analytical sizing methods for behind-themeter battery storage.,” doi: https://doi.org/10.1016/j.est.2017.04.009 |
10 | Li HX. Horan P. Luther MB. Ahmed TMF., “Informed decision making of battery storage for solar-PV homes using smart meter data.,” doi: https://doi.org/10.1016/j.enbuild.2019.06.036 |
11 | Li M. Lenzen M. Wang D. Nansai K., “GIS-based modelling of electric-vehicle–grid integration in a 100% renewable electricity grid.,” doi: https://doi.org/10.1016/j.apenergy.2020.114577. |
12 | Xiao J. Zhang Z. Bai L. Liang H., “Determination of the optimal installation site and capacity of battery energy storage system in distribution network integrated with distributed generation.,” doi: https://doi.org/10.1049/iet-gtd.2015.0130. |
13 | Schneider M. Biel K. Pfaller S. Schaede H. Rinderknecht S. Glock CH., “Using inventory models for sizing energy storage systems: An interdisciplinary approach.,” doi: https://doi.org/10.1016/j.est.2016.02.009 |
14 | Tervo E. Agbim K. DeAngelis F. Hernandez J. Kim HK., “An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States.,” doi: https://doi.org/10.1016/j.rser.2018.06.055. |
15 | Baniasadi A. Habibi D. Al-Saedi W. Masoum MAS. Das C К., “Optimal sizing design and operation of electrical and thermal energy storage systems in smart buildings.,” doi: https://doi.org/10.1016/j.est.2019.101186. |
16 | Sharma P. Kolhe M. Sharma A., “Economic Analysis of a Building Integrated Photovoltaic System Without and With Energy Storage.,” doi: https://doi.org/10.1088/1757- 899X/605/1/012013 |
17 | Beltran H. Tomas Garcia I. Alfonso-Gil JC. Perez E., “Levelized Cost of Storage for Li-Ion Batteries Used in PV Power Plants for Ramp-Rate Control.,” doi: https://doi.org/10.1109/TEC.2019.2891851. |
18 | Boeckl B. Kienberger T., “‘Sizing of PV storage systems for different household types.,’” doi: https://doi.org/10.1016/j.est.2019.100763 |
19 | Johannes Weniger. Tjarko Tjaden. Volker Quaschning., “Sizing of residential PV battery systems,” Energy Procedia 46 78 – 87 |