10

Annotatsiya. Kirish. Quyosh energiyasi anʼanaviy qazib olinadigan yoqilg‘iga asoslangan energiya manbalarini almashtirish orqali issiqxona gazlari (GHG) chiqindilarini sezilarli darajada kamaytiradi. Koʻmir yoki tabiiy gaz zavodlaridan farqli o'laroq, quyosh panellari va kollektorlari energiya ishlab chiqarish jarayonida karbonat angidrid (CO₂) chiqarmaydi.

Usul va materiallar. Ushbu ishda xalqaro nashriyotlar bazasidan << flat AND solar AND water AND heater And collectors >> kabi kalit soʻzlar orqali chop etilgan ilmiy nashrlar aniqlandi, Scopus maʼlumotlar bazasini ochiq platformasidan foydalanildi. Shu bilan birga yangi yondashuvli maqolalarni aniqlash uchun << pcm AND flat AND solar AND water AND heater And collectors >> kabi kalit soʻzlar orqali qoʻshimcha nashrlar aniqlandi (10/02/2025 yil).

Natijalar. Ushbu yigʻilgan maʼlumotlar asosida nashrlar soni, unga hissa qoʻshgan mamlakatlar va mualliflar, nashrlarning turlari va sohalari tahlil qilindi. Turli xil Quyosh suv isitish kollektorlari turlari, afzallik va kamchiliklari aniqlandi. Natijada tanlangan maqolalar bo‘yicha “Adabiyotlar tahlili” o‘tkazildi.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 20-08-2025
  • Read count 10
  • Date of publication 27-03-2025
  • Main LanguageO'zbek
  • Pages48-57
Ўзбек

Annotatsiya. Kirish. Quyosh energiyasi anʼanaviy qazib olinadigan yoqilg‘iga asoslangan energiya manbalarini almashtirish orqali issiqxona gazlari (GHG) chiqindilarini sezilarli darajada kamaytiradi. Koʻmir yoki tabiiy gaz zavodlaridan farqli o'laroq, quyosh panellari va kollektorlari energiya ishlab chiqarish jarayonida karbonat angidrid (CO₂) chiqarmaydi.

Usul va materiallar. Ushbu ishda xalqaro nashriyotlar bazasidan << flat AND solar AND water AND heater And collectors >> kabi kalit soʻzlar orqali chop etilgan ilmiy nashrlar aniqlandi, Scopus maʼlumotlar bazasini ochiq platformasidan foydalanildi. Shu bilan birga yangi yondashuvli maqolalarni aniqlash uchun << pcm AND flat AND solar AND water AND heater And collectors >> kabi kalit soʻzlar orqali qoʻshimcha nashrlar aniqlandi (10/02/2025 yil).

Natijalar. Ushbu yigʻilgan maʼlumotlar asosida nashrlar soni, unga hissa qoʻshgan mamlakatlar va mualliflar, nashrlarning turlari va sohalari tahlil qilindi. Turli xil Quyosh suv isitish kollektorlari turlari, afzallik va kamchiliklari aniqlandi. Natijada tanlangan maqolalar bo‘yicha “Adabiyotlar tahlili” o‘tkazildi.

Русский

Аннотация. Введение. Солнечная энергия значительно сокращает выбросы парниковых газов (ПГ), заменяя традиционные источники энергии на основе ископаемого топлива. В отличие от угольных или газовых электростанций, солнечные панели и коллекторы не выделяют углекислый газ (CO₂) в процессе производства энергии.

Методы и материалы. В данном исследовании научные публикации, опубликованные с использованием таких ключевых слов, как << flat AND solar AND water AND heater And collectors >>, были выявлены в международной базе данных публикаций с использованием открытой платформы базы данных Scopus. В то же время были выявлены дополнительные публикации с использованием таких ключевых слов, как << pcm AND flat AND solar AND water AND heater AND collectors >>, чтобы идентифицировать статьи с новым подходом (10/02/2025).
Резултаты. На основе собранных данных был проведен анализ количества публикаций, стран-участниц и авторов, а также типов и областей публикаций. Выявлены различные типы солнечных водонагревательных коллекторов, их преимущества и недостатки. После этого был проведен «Обзор литературы» по выбранным статьям.
 

English

Abstract. Introduction. Solar energy significantly reduces greenhouse gas (GHG) emissions by replacing traditional fossil fuel-based energy sources. Unlike coal or natural gas plants, solar panels and collectors do not emit carbon dioxide (CO₂) during the power generation process. Studies show that widespread deployment of solar systems could reduce global CO₂ emissions by 4-7 gigatonnes per year by 2050. Solar energy helps improve air quality by eliminating the emissions of sulfur dioxide (SO₂), nitrogen oxides (NOₓ), and particulate matter associated with fossil fuel combustion. The most commonly used collector types are evacuated tube collectors (58.47%) and flat plate collectors (33.6%), which account for 92% of total consumption. Other types of collectors, including collectors without transparent coatings (7.4%) and other advanced

 

technologies (PVT, concentrated collectors, air collectors) have not yet had a significant impact on consumption.

Method. In this work, scientific publications published using keywords such as << flat AND solar AND water AND heater And collectors >> were identified from the international publication database, using the open platform of the Scopus database. At the same time, additional publications were identified using keywords such as << pcm AND flat AND solar AND water AND heater And collectors >> to identify articles with a new approach (10/02/2025). Based on this collected data, the number of publications, countries and authors contributing to them, types and fields of publications were analyzed. Different types of solar water heating collectors, their advantages and disadvantages were identified. After that, a “Literature Analysis” was conducted on the selected articles

Author name position Name of organisation
1 Shamurotova S.M. katta o'qituvchi Qarshi davlat texnika universiteti
2 Choriyeva S.Y. assistent Qarshi davlat texnika universiteti
Name of reference
1 I. E. A. (IEA), ‘Global Energy Review 2022
2 Intergovernmental Panel on Climate Change (IPCC), Climate Finance for Energy Transition. 2022.
3 W. H. O. (WHO), ‘Air Pollution and Health Risks’, 2021
4 European Environment Agency (EEA), ‘Impacts of Renewable Energy on Water Resources’, 2021.
5 ‘World Bank Climate Data. (2023), https://www.iea-shc.org/solar-heat-worldwide’.
6 ‘Cosine Similarity Tutorial’
7 G. Sidorov, A. Gelbukh, H. Gómez-Adorno, and D. Pinto, ‘Soft similarity and soft cosine measure: Similarity of features in vector space model’, Comput. y Sist., vol. 18, no. 3, pp. 491–504, Jul. 2014, doi: 10.13053/CyS-18-3-2043
8 S. Wannasuphoprasit, Y. Zhou, and D. Bollegala, ‘Solving Cosine Similarity Underestimation between High Frequency Words by ℓ 2 Norm Discounting’. [Online]. Available: https://huggingface.co/
9 I. Harris, A. James Rivas, M. D. L. A. Ortega Del Rosario, and M. Z. Saghir, ‘Recent developments in phase change material-based solar water heating systems: Insights on research trends and opportunities’, Int. J. Thermofluids, vol. 20, no. April, p. 100359, 2023, doi: 10.1016/j.ijft.2023.100359.
10 D. Barlev, R. Vidu, and P. Stroeve, ‘Innovation in concentrated solar power’, Sol. Energy Mater. Sol. Cells, vol. 95, no. 10, pp. 2703–2725, 2011, doi: 10.1016/j.solmat.2011.05.020
11 M. Zainal, A. Ab, Y. Rafeeu, and N. M. Adam, ‘Prospective scenarios for the full solar energy development in Malaysia’, Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 3023– 3031, 2010, doi: 10.1016/j.rser.2010.07.062
12 S. Esfandeh and M. H. Esfe, Applications of nanofluids in solar energy collectors focusing on solar stills. INC, 2022. doi: 10.1016/B978-0-323-88656-7.00010-6.
13 A. Shirazi, R. A. Taylor, G. L. Morrison, and S. D. White, ‘Solar-powered absorption chillers : A comprehensive and critical review’, vol. 171, no. January, pp. 59–81, 2018, doi: 10.1016/j.enconman.2018.05.091
14 K. Chopra, V. V Tyagi, A. K. Pandey, and A. Sari, ‘Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications’, Appl. Energy, vol. 228, no. May, pp. 351–389, 2018, doi: 10.1016/j.apenergy.2018.06.067
15 D. Zhang et al., ‘Thermal performance of two evacuated tube solar collectors with flat heat pipes’, Appl. Therm. Eng., vol. 241, no. September 2023, p. 122366, 2024, doi: 10.1016/j.applthermaleng.2024.122366.
16 S. A. Kalogirou, Low Concentration Ratio Solar Collectors, vol. 3. Elsevier Ltd., 2012. doi: 10.1016/B978-0-08-087872-0.00305-X.
17 S. Suman, M. Kaleem, and M. Pathak, ‘Performance enhancement of solar collectors — A review’, Renew. Sustain. Energy Rev., vol. 49, pp. 192–210, 2015, doi: 10.1016/j.rser.2015.04.087.
18 N. Eskin, ‘Transient performance analysis of cylindrical parabolic concentrating collectors and comparison with experimental results’, vol. 40, pp. 175–191, 1999
19 E. Bellos and C. Tzivanidis, ‘Solar concentrating systems and applications in Greece e A critical review’, J. Clean. Prod., vol. 272, p. 122855, 2020, doi: 10.1016/j.jclepro.2020.122855.
20 ‘Solar Energy Collectors’, pp. 121–217, doi: 10.1016/B978-0-12-374501-9.00003-0.
21 E. Bellos, ‘Progress in beam-down solar concentrating systems’, Prog. Energy Combust. Sci., vol. 97, no. January, p. 101085, 2023, doi: 10.1016/j.pecs.2023.101085.
Waiting