Annotatsiya. Kirish. Hozirgi vaqtda dunyo bo‘yicha energiya isteʼmolining 20% qismi binolarda havoni maromlashda foydalaniladigan maishiy maromlagichlar hissasiga toʻgʻri keladi va ularning o‘rnatilgan quvvati 1220 TVtsoat/yil ni tashkil etadi. Maishiy maromlagichlardan foydalanish surʼati shunday davom etsa, 2050 yilga borib elektr energiya isteʼmoli 1940 TVtsoat/yil (31,8%) gacha ortadi Demak, binolarda havoni sovitish va namlantirish tizimlarida solishtirma energiya isteʼmolini kamaytirishda anʼanaviy maromlagichlarning o‘rnini bosuvchi bugʻlatishli sovitish qurilmalaridan foydalanish eng maqbul yechim hisoblanadi.
Usul va materiallar. Binolarda havoni sovitish va namlantirish uchun taklif etilayotgan bugʻlatishli sovitish qurilmalarining energetik samaradorligini baholashda bugʻlatishli sovitish qurilmasining prinsipial sxemasi va bugʻlatishli sovitish qurilmasida issiqlik va massa almashinuv jarayonlarini nazariy tadqiqot qilish imkonini beradigan energiya balansi tenglamalari asosidagi matematik model ishlab chiqildi va sonli tadqiqot qilindi.
Annotatsiya. Kirish. Hozirgi vaqtda dunyo bo‘yicha energiya isteʼmolining 20% qismi binolarda havoni maromlashda foydalaniladigan maishiy maromlagichlar hissasiga toʻgʻri keladi va ularning o‘rnatilgan quvvati 1220 TVtsoat/yil ni tashkil etadi. Maishiy maromlagichlardan foydalanish surʼati shunday davom etsa, 2050 yilga borib elektr energiya isteʼmoli 1940 TVtsoat/yil (31,8%) gacha ortadi Demak, binolarda havoni sovitish va namlantirish tizimlarida solishtirma energiya isteʼmolini kamaytirishda anʼanaviy maromlagichlarning o‘rnini bosuvchi bugʻlatishli sovitish qurilmalaridan foydalanish eng maqbul yechim hisoblanadi.
Usul va materiallar. Binolarda havoni sovitish va namlantirish uchun taklif etilayotgan bugʻlatishli sovitish qurilmalarining energetik samaradorligini baholashda bugʻlatishli sovitish qurilmasining prinsipial sxemasi va bugʻlatishli sovitish qurilmasida issiqlik va massa almashinuv jarayonlarini nazariy tadqiqot qilish imkonini beradigan energiya balansi tenglamalari asosidagi matematik model ishlab chiqildi va sonli tadqiqot qilindi.
Abstract. Introduction. Currently, 20% of the world's energy consumption is accounted for by domestic air conditioners used to cool the air in buildings, and their installed capacity is 1220 TWh/year. If the current rate of use of domestic air conditioners continues, by 2050 electricity consumption will increase to 1940 TWh/year (31.8%). Therefore, the most rational solution for reducing the specific energy consumption in cooling and humidifying systems in buildings is the use of evaporative cooling units replacing traditional air conditioners.
Methods and materials. A mathematical model based on energy balance equations has been developed, allowing theoretical investigation of heat and mass transfer processes in an evaporative cooling device, and a basic diagram of an evaporative cooling system for assessing the energy efficiency of evaporative cooling devices proposed for cooling and humidifying air in buildings, and numerical studies have been carried out.
Аннотация. Введение. В настоящее время 20% мирового потребления энергии приходится на бытовые кондиционеры, используемые для охлаждения воздуха в зданиях, а их установленная мощность составляет 1220 ТВтч/год. При сохранении таких темпов использования бытовых кондиционеров к 2050 году потребление электроэнергии увеличится до 1940 ТВтч/год (31,8%). Поэтому наиболее рациональным решением для снижения удельного потребления энергии в системах охлаждения и увлажнения воздуха в зданиях является использование испарительных охладительных установок, заменяющих традиционные кондиционеры.
Методы и материалы. Разработана математическая модель на основе уравнений энергетического баланса позволяющие теоретически исследовать процессы тепломассообмена в испарительном охлаждающем устройстве и принципиальная схема системы испарительного охлаждения для оценки энергоэффективности испарительных охлаждающих устройств, предлагаемых для охлаждения и увлажнения воздуха в зданиях и проведены численные исследования.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Ibragimov U.X. | t.f.f.d., dotsent | QarDTU |
2 | Ergashev .H. | t.f.f.d., dots. | QarDTU |
3 | Botirov A.S. | doktorant | QarDTU |
№ | Name of reference |
---|---|
1 | Amer O., Boukhanouf R., Ibrahim H. A review of evaporative cooling technologies, Int. J. Environ. Sci. Develop. 6 (2), 2015. – p. 111-117. |
2 | Duan Z. Indirect evaporative cooling: past, present and future potentials, Renew. Sustain. Energy Rev. 16, 2012. – p. 6823-6850. |
3 | Xuan Y., Xiao F., Niu X., Huang X., Wang S. Research and application of evaporative cooling in China: a review (I)–research, Renew. Sust. Energ. Rev. 16 (5), 2012. – p. 3535-3546. |
4 | Uzair S. at all. A review of recent advances in indirect evaporative cooling technology. International Communications in Heat and Mass Transfer 122, 2021:105140. |
5 | Noor S., Ashraf H., Sultan M., Khan Z.M. Evaporative cooling options for building airconditioning: a comprehensive study for climatic conditions of Multan (Pakistan), Energies 13 (12), 2020:3061. |
6 | Kabeel A.E., Hamed M.H., Omara Z.M., Sharshir S.W. “Experimental Study of a Humidification-Dehumidification Solar Technique by Natural and Forced Air Circulation.” Energy 68, 2014. – p. 218-228 |
7 | Zhani K., Bacha H.B., Damak T. “Modeling and Experimental Validation of a Humidification– Dehumidification Desalination Unit Solar Part.” Energy 36 (5), 201. – p. 3159-3169. |
8 | Li Y., Huang X., Peng H., Ling X., Tu S. “Simulation and Optimization of HumidificationDehumidification ES.” Energy 145, 2018. – p. 128-140. |
9 | Fisenko S.P., Petruchik A.I. “Toward to the Control System of Mechanical Draft Cooling Tower of Film Type.” International Journal of Heat and Mass Transfer 48 (1), 2005. – p. 31-35. |
10 | Rafique M.M., Gandhidasan P., Rehman S., AlHadhrami L.M. “A Review on Desiccant Based Evaporative Cooling Systems.” Renewable and Sustainable Energy Reviews 45, 2015. – p. 145-159. |
11 | Dhamneya A.K., Rajput S.P.S., Singh A. “Thermodynamic Performance Analysis of Direct Evaporative Cooling System for Increased Heat and Mass Transfer Area.” Ain Shams Engineering Journal 9 (4), 2018. – p. 2951-2960. |
12 | Malli A., Seyf H.R., Layeghi M., Sharifian S., Behravesh H. “Investigating the Performance of Cellulosic Evaporative Cooling Pads.” EnergyConversionandManagement 52 (7), 2011. – p. 2598-2603. |
13 | Ghalavand Y., Rahimi A., Hatamipour M.S. “Mathematical Modeling for Humidifier Performance in a Compression Desalination System: Insulation Effects.” Desalination 433, 2018. – p. 48-55. |
14 | Eslamimanesh A., Hatamipour M.S. “Mathematical Modeling of a Direct Contact Humidification–Dehumidification Desalination Process.” Desalination 237 (1-3), 2009. – p. 296-304. |
15 | Wu J.M., Huang X., Zhang H. 2009b. “Theoretical Analysis on Heat and Mass Transfer in a Direct Evaporative Cooler.” Applied Thermal Engineering 29 (5-6), 2009. – p. 980-984. |
16 | Fouda A., Melikyan Z. “A Simplified Model for Analysis of Heat and Mass Transfer in a Direct Evaporative Cooler.” Applied Thermal Engineering 31 (5), 2011. – p. 932-936. |