14

Annotatsiya. Kirish. Hozirgi kunda aholi yashash binolarini sovitishda dunyo bо‘yicha umumiy energiyaning iste’molining 20% qismi sarflanadi, bu kо‘rsatkich 2050-yilga borib 25% gacha ortadi. Demak, binolarni sovitish tizimlarida solishtirma energiya iste’molini kamaytirish dolzarb masalalardan hisoblanib, binolarni sovitish tizimlarida qayta tiklanadigan energiya manbalari, xususan quyosh energiyasidan foydalanish eng maqbul yechim hisoblanadi.

Usul va materiallar. Yashash uylarini sovitish tizimlarida solishtirma energiya sarfini kamaytirish maqsadida, bug‘latishli sovitish qurilmasi va quyosh fotoelektrik modullarini kombinatsiyalashtirish asosida to‘liq quyosh energiyasi hisobidan ishlovchi hamda bir vaqtning o‘zida tashqi havoni talab etilgan haroratgacha sovitish va namlantirish imkonini beradigan kombinatsiyalashgan quyosh fotoelektrik modulli bug‘latishli sovitish tizimi ishlab chiqildi. Kombinatsiyalashgan bug‘latishli sovitish tizimining sovuqlik yuklamasini aniqlash uchun quyosh nurlanish intensivligi, tashqi havo harorati va issiqlik oqimlari vaqt bo‘yicha o‘zgarganda, tajriba uyining ichki havosi haroratini vaqt bo‘yicha o‘zgarishini aniqlash imkonini beradigan issiqlik balansi tenglamalari asosidagi matematik model chiqildi va sonli tadqiqot qilindi.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 20-08-2025
  • Read count 14
  • Date of publication 27-03-2025
  • Main LanguageO'zbek
  • Pages94-106
Ўзбек

Annotatsiya. Kirish. Hozirgi kunda aholi yashash binolarini sovitishda dunyo bо‘yicha umumiy energiyaning iste’molining 20% qismi sarflanadi, bu kо‘rsatkich 2050-yilga borib 25% gacha ortadi. Demak, binolarni sovitish tizimlarida solishtirma energiya iste’molini kamaytirish dolzarb masalalardan hisoblanib, binolarni sovitish tizimlarida qayta tiklanadigan energiya manbalari, xususan quyosh energiyasidan foydalanish eng maqbul yechim hisoblanadi.

Usul va materiallar. Yashash uylarini sovitish tizimlarida solishtirma energiya sarfini kamaytirish maqsadida, bug‘latishli sovitish qurilmasi va quyosh fotoelektrik modullarini kombinatsiyalashtirish asosida to‘liq quyosh energiyasi hisobidan ishlovchi hamda bir vaqtning o‘zida tashqi havoni talab etilgan haroratgacha sovitish va namlantirish imkonini beradigan kombinatsiyalashgan quyosh fotoelektrik modulli bug‘latishli sovitish tizimi ishlab chiqildi. Kombinatsiyalashgan bug‘latishli sovitish tizimining sovuqlik yuklamasini aniqlash uchun quyosh nurlanish intensivligi, tashqi havo harorati va issiqlik oqimlari vaqt bo‘yicha o‘zgarganda, tajriba uyining ichki havosi haroratini vaqt bo‘yicha o‘zgarishini aniqlash imkonini beradigan issiqlik balansi tenglamalari asosidagi matematik model chiqildi va sonli tadqiqot qilindi.

Русский

ннотация. Введение. В настоящее время на охлаждение жилых зданий приходится 20% от общего объема мирового потребления энергии, а к 2050 году этот показатель увеличится до 25%. Поэтому снижение удельного энергопотребления систем охлаждения зданий является актуальной проблемой, а использование возобновляемых источников энергии, в частности солнечной энергии, в системах охлаждения зданий является наиболее рациональным решением.

Методы и материалы. Для снижения удельного энергопотребления в системах охлаждения жилых помещений разработана комбинированная система испарительного охлаждения на основе солнечных фотоэлектрических модулей, которая работает полностью на солнечной энергии и позволяет одновременно охлаждать и увлажнять наружный воздух до необходимой температуры на основе комбинации испарительного охлаждающего устройства и солнечных фотоэлектрических модулей. Для определения холодильной нагрузки комбинированной испарительной системы охлаждения разработана математическая модель на основе уравнений теплового баланса и проведено численное исследование, позволяющее определить изменение температуры внутреннего воздуха экспериментального дома в течение времени при изменении интенсивности солнечной радиации, температуры наружного воздуха и тепловых потоков в течение времени

English

Abstract. Introduction. Currently, cooling residential buildings accounts for 20% of the world's total energy consumption, and this figure will increase to 25% by 2050. Therefore, reducing the specific energy consumption of building cooling systems is an urgent problem, and the use of renewable energy sources, in particular solar energy, in building cooling systems is the most rational solution.

Methods and materials. In order to reduce the specific energy consumption in residential cooling systems, a combined evaporative cooling system based on solar photovoltaic modules has been developed, which operates entirely on solar energy and allows for simultaneous cooling and humidification of outside air to the required temperature based on a combination of an evaporative cooling device and solar photovoltaic modules. To determine the refrigeration load of the combined evaporative cooling system, a mathematical model based on heat balance equations has been developed and a numerical study has been conducted to determine the change in the indoor air temperature of the experimental house over time with a change in the intensity of solar radiation, outside air temperature and heat flows over time.
 

Author name position Name of organisation
1 Ibragimov U.X. t.f.f.d., dotsent QarDTU
2 Botirov A.S. doktorant QarDTU
Name of reference
1 Raji A., Hasnaoui M. Mixed convection heat transfer in ventilated cavities with opposing and assisting flows. Engineering Computations, 17, 2000. – p. 556-572
2 Singh S., Sharif M.A.R. Mixed convective cooling of a rectangular cavity with inlet and exit openings on differentially heated side walls. Numerical Heat Transfer Part A, 44, 2003. – p. 233-253.
3 Posner J. Measurement and prediction of indoor air flow in a model room. Energy and buildings, 35, 2003. – p. 515-526.
4 Rahman M., Alim M., Mamun M., Chowdhury M.K., Islam A.K. Numerical study of opposing mixed convection in a vented enclosure. ARPN J Eng and Appl Sciences, 2, 2007. – p. 25-36.
5 Saha S., Mamun A., Hossain Z., Islam S. Mixed convection in an enclosure with different inlet and exit configurations. Journal of Applied Fluid Mechanics, 1, 2008. – p. 78-93.
6 Lariani A., Nesreddine H., Galanis N. Numerical and experimental study of 3D turbulent airflow in a full scale heated ventilated room. Engineering Applications of Computational Fluid Mechanics, 3, 2009. – p. 1-14
7 Xaman J., Tun J., Alvarez G., et al. Optimum ventilation based on the overall ventilation effectiveness for temperature distribution in ventilated cavities. International Journal of Thermal Sciences, 48, 2009. – p. 1574-1585.
8 Rodriguez N.A., Hinojosa J.F. Numerical study of airflow and heat transfer in an air-cooled room with different inlet positions. Journal of Building Physics, 37, 2014. – p. 246-268.
9 Hsu T., Wang S. Mixed convection in a rectangular enclosure with discrete heat sources. Numerical Heat Transfer Part A. 38, 2000. – p. 627-652.
10 Radhakrishnan T., Verma A., Balaji C., et al. An experimental and numerical investigation of mixed convection from a heat generating element in a ventilated cavity. Experimental Thermal and Fluid Science, 32, 2007. – p. 502-520.
11 Ghasemi B., Aminossadati S.M. Numerical simulation of mixed convection in a rectangular enclosure with different numbers and arrangements of discrete heat sources. The Arabian Journal for Science and Engineering, 33, 2008. – p. 189-207.
12 Bilgen E., Muftuoglu A. Cooling strategy by mixed convection of a discrete heater at its optimum position in a square cavity with ventilation ports. Int. Comm. in Heat and Mass Transfer, 35, 2008. – p. 545-550.
13 Самарин О.Д., Матвеева Е.Г. Определение параметров охладительного периода // Сантехника. Отопление. Кондиsионирование. 2013, № 1 (133). - с. 120-122
14 Малявина Е.Г., Крyuчкова О.Y. Разработка инженерного метода определения энергетических показателей систем кондиsионирования воздуха // Жилищное строительство. 2012, № 6. - с. 73-75.
15 Ливчак В.И. Рол градусо-суток охладительного периода при расчете потребности жилых домов в охлаждении // АВОК. 2015, №7. - с. 22-27.
16 Shanmuga P.S., Premalatha M., Rejkumar S.R., Thirunvukkarasu L. Analysis of cooling degree days for Tiruchirappalli – a district in India. IJRRAS. 2011. №8 (1). – p. 44-56.
17 SHNQ 2.01.01-22 “Loyihalash uchun iqlimiy va fizikaviy-geologik ma’lumotlar”, Toshkent, 2022 yil.
18 QMQ 2.04.05-97*. Isitish, ventilyatsiya va konditsiyalash / О‘zR Davrarxitektqurilish – Toshkent, AQATM, 2011-212 bet.
19 https://weatherarchive.ru/Temperature/Karshi/
Waiting