Abstract. This study investigates the impact of carbon black-based nanofluids on the thermal performance of parabolic trough collector (PTC) systems. Carbon black nanoparticles were oxidised and dispersed into distilled water to prepare stable nanofluids using the two-step ultrasonication method. A comprehensive mathematical model of a PTC system was developed, incorporating heat balance equations and temperature-dependent thermophysical properties of the nanofluids. The model was solved using an implicit finite difference scheme and validated against experimental data, yielding high accuracy (RMSE = 0.79 K, R² = 0.99992). Simulations were conducted using annual meteorological data from Tashkent, Uzbekistan, to assess the influence of nanofluids on heat gain and convective heat transfer performance. Results showed that carbon black-based nanofluids enhanced the annual heat gain by an average of 0.006% compared to water, with the maximum gain recorded in July. The nanofluid also maintained higher heat transfer coefficients throughout the year, ranging from 370 to 400 W/m²·K, indicating improved convective performance under varying climatic conditions. These findings confirm the potential of carbon black-based nanofluids to improve the thermal efficiency and year-round operational stability of solar thermal systems.
Methods and materials. Various heat transfer fluids enhance thermal efficiency in parabolic trough collectors, among which nanofluids hold a special place. This study dispersed carbon black nanoparticles into distilled water using a two-step ultrasonication method to prepare stable nanofluids. Temperature-dependent thermophysical properties of the nanofluids were determined and applied in calculations. A mathematical model of a parabolic trough collector was developed, solved using an implicit finite difference scheme, and validated against experimental data.
Results. The effect of nanofluids on heat transfer efficiency was analysed using annual meteorological data for Tashkent city. According to the research results, carbon black-based nanofluids increased the annual heat gain by an average of 0.006% compared to water, with the highest efficiency observed in July. Furthermore, the nanofluid maintained higher heat transfer coefficients throughout the year (370–400 W/m²·K), demonstrating superior system performance under varying climatic conditions. These findings confirm the high potential of carbon black-based nanofluids to enhance solar thermal systems' thermal efficiency and year-round stability.
Abstract. This study investigates the impact of carbon black-based nanofluids on the thermal performance of parabolic trough collector (PTC) systems. Carbon black nanoparticles were oxidised and dispersed into distilled water to prepare stable nanofluids using the two-step ultrasonication method. A comprehensive mathematical model of a PTC system was developed, incorporating heat balance equations and temperature-dependent thermophysical properties of the nanofluids. The model was solved using an implicit finite difference scheme and validated against experimental data, yielding high accuracy (RMSE = 0.79 K, R² = 0.99992). Simulations were conducted using annual meteorological data from Tashkent, Uzbekistan, to assess the influence of nanofluids on heat gain and convective heat transfer performance. Results showed that carbon black-based nanofluids enhanced the annual heat gain by an average of 0.006% compared to water, with the maximum gain recorded in July. The nanofluid also maintained higher heat transfer coefficients throughout the year, ranging from 370 to 400 W/m²·K, indicating improved convective performance under varying climatic conditions. These findings confirm the potential of carbon black-based nanofluids to improve the thermal efficiency and year-round operational stability of solar thermal systems.
Methods and materials. Various heat transfer fluids enhance thermal efficiency in parabolic trough collectors, among which nanofluids hold a special place. This study dispersed carbon black nanoparticles into distilled water using a two-step ultrasonication method to prepare stable nanofluids. Temperature-dependent thermophysical properties of the nanofluids were determined and applied in calculations. A mathematical model of a parabolic trough collector was developed, solved using an implicit finite difference scheme, and validated against experimental data.
Results. The effect of nanofluids on heat transfer efficiency was analysed using annual meteorological data for Tashkent city. According to the research results, carbon black-based nanofluids increased the annual heat gain by an average of 0.006% compared to water, with the highest efficiency observed in July. Furthermore, the nanofluid maintained higher heat transfer coefficients throughout the year (370–400 W/m²·K), demonstrating superior system performance under varying climatic conditions. These findings confirm the high potential of carbon black-based nanofluids to enhance solar thermal systems' thermal efficiency and year-round stability.
Аннотация. В настоящем исследовании рассматривается влияние наножидкостей на основе технического углерода на тепловую эффективность систем с параболоцилиндрическими концентраторами (ПЦК). Стабильные наножидкости были приготовлены диспергированием предварительно окисленных наночастиц технического углерода в дистиллированной воде двухступенчатым методом ультразвуковой обработки. Разработана комплексная математическая модель системы ПЦК, включающая уравнения теплового баланса и температурно-зависимые теплофизические свойства наножидкостей. Модель была решена методом неявных конечных разностей и верифицирована экспериментальными данными, продемонстрировав высокую точность (RMSE = 0,79 К, R² = 0,99992). Численное моделирование проводилось на основе годовых метеорологических данных города Ташкента (Узбекистан) для оценки влияния наножидкостей на теплопроизводительность и конвективный теплообмен. Результаты показали, что наножидкости на основе технического углерода увеличивают годовой прирост теплоты в среднем на 0.006% по сравнению с водой, при этом максимальный прирост наблюдался в июле. Кроме того, наножидкость поддерживала более высокие коэффициенты теплоотдачи в течение всего года (от 370 до 400 Вт/м²·K), что свидетельствует об улучшенных характеристиках конвективного теплообмена в условиях изменяющегося климата. Полученные результаты подтверждают потенциал использования наножидкостей на основе технического углерода для повышения тепловой эффективности и обеспечения круглогодичной стабильности работы солнечных тепловых систем.
Методы и материалы. Для повышения эффективности теплообмена в параболоцилиндрических концентраторах используются различные теплоносители, среди которых наножидкости занимают особое место. В данном исследовании наножидкости на основе технического углерода (Carbon black) были приготовлены двухступенчатым методом ультразвуковой диспергации с последующим растворением наночастиц в дистиллированной воде для получения стабильных наножидкостей. Теплофизические свойства наножидкостей были определены с учетом их температурной зависимости и использованы в расчетах. Разработана математическая модель параболоцилиндрического концентратора, решение которой выполнено методом неявных конечных разностей и валидировано на основе экспериментальных данных.
Результаты. Влияние наножидкостей на теплопередающую эффективность было изучено на основе годовых метеорологических данных для города Ташкент. Результаты исследования показали, что наножидкости на основе технического углерода увеличивают ежегодный показатель поглощения тепла в среднем на 0.006% по сравнению с водой, при этом наибольшая эффективность зафиксирована в июле. Также наножидкость в течение всего года обеспечивала более высокие коэффициенты теплоотдачи (от 370 до 400 Вт/м²·К), демонстрируя высокую эффективность работы системы в различных климатических условиях. Полученные результаты подтверждают высокий потенциал наножидкостей на основе технического углерода для повышения тепловой эффективности и круглогодичной стабильности солнечных тепловых систем.
Annotatsiya. Ushbu tadqiqotda karbon asosidagi nanosuyuqliklarning parabolosilindrik konsentratorli (PTC) quyosh qurilmalarining issiqlik samaradorligiga ta’siri o‘rganilgan. Barqaror nanosuyuqliklar ikki bosqichli ultratovush usuli yordamida oksidlangan karbon qorasi nanozarrachalarini distillangan suvda dispergatsiya qilish orqali tayyorlandi. PTC tizimining issiqlik balansi tenglamalarini va nanosuyuqliklarning haroratga bog‘liq issiqlik fizikaviy xususiyatlarini hisobga olgan holda keng qamrovli matematik modeli ishlab chiqildi. Model chekli ayirmalar usulida yechildi va eksperimental natijalar bilan tekshirildi hamda yuqori aniqlik ko‘rsatdi (RMSE = 0,79 K, R² = 0,99992). Simulyatsiyalar Toshkent shahrining yillik meteorologik ma’lumotlari asosida o‘tkazilib, nanosuyuqliklarning issiqlik samaradorligi va konvektiv issiqlik almashinuviga ta’siri baholandi. Natijalar ko‘rsatishicha, karbon asosidagi nanosuyuqliklar suv bilan solishtirganda yillik issiqlik yig‘ilishini o‘rtacha 0.006% ga oshirdi va maksimal issiqlik yig‘ilishi iyul oyida qayd etildi. Bundan tashqari, nanosuyuqlik yil davomida yuqoriroq issiqlik uzatish koeffitsiyentlarini (370 dan 400 Vt/m²·K gacha) saqlab qoldi, bu esa o‘zgaruvchan iqlim sharoitlarida konvektiv issiqlik uzatish samaradorligining yaxshilanganligini ko‘rsatadi. Ushbu natijalar karbon qorasi asosidagi nanosuyuqliklar quyosh issiqlik tizimlarining issiqlik samaradorligi va yil bo‘yi barqaror ishlashini oshirish uchun yuqori potensialga ega ekanligini tasdiqlaydi.
Usul va materiallar. Parabolosilindrik konsentratorlarda issiqlik uzatish samaradorligini oshirish uchun turli xil issiqlik tashuvchi suyuqliklardan foydalaniladi. Ularning ichida nanosuyuqliklar alohida o‘rin tutadi. Ushbu tadqiqotda uglerod qorasi (Carbon black) nanozarrachalari ikki bosqichli ultratovushli dispergirlash usuli orqali distillangan suvda tarqatilib, barqaror nanosuyuqliklar tayyorlandi. Nanosuyuqliklarning issiqlik fizikaviy xususiyatlari haroratga bog‘liq holda aniqlanib, hisob-kitoblar uchun qo‘llanildi. Parabolosilindrik konsentratorning matematik modeli ishlab chiqilib, uning yechimi implitsit chegarali farqlar usuli orqali amalga oshirildi va eksperimental ma’lumotlar bilan tasdiqlandi.
Natijalar. Toshkent shahrining bir yillik meteorologik ma’lumotlari asosida nanosuyuqliklarning issiqlik uzatish samaradorligiga ta’siri tahlil qilindi. Tadqiqot natijalariga ko‘ra, uglerod qorasi asosli nanosuyuqliklar oddiy suvga nisbatan yillik issiqlik yig‘ish samaradorligini o‘rtacha 0.006% ga oshirgani aniqlandi. Eng yuqori samaradorlik iyul oyida kuzatildi. Shuningdek, nanosuyuqlik butun yil mobaynida yuqori issiqlik uzatish koeffitsiyentini (370–400 Vt/m²·K) ta’minladi, bu esa turli iqlim sharoitlarida tizimning yuqori samaradorligini ko‘rsatdi. Olingan natijalar uglerod qorasi asosli nanosuyuqliklarning quyosh issiqlik tizimlarining yil davomidagi barqarorligi va samaradorligini yaxshilashda yuqori potensialga ega ekanligini tasdiqladi.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Jalilov D.. | doktorant | O'zFA FTI |
2 | Jurayev T.. | PhD | O'zFA FTI |
3 | Halimov A.. | PhD | O'zFA FTI |
4 | Jurayev E.. | PhD | O'zFA FTI |
5 | Axatov J.. | t.f.d., prof. | O'zFA FTI |
№ | Name of reference |
---|---|
1 | [1] Borode A., Tshephe T., and Olubambi P. 2024. A Critical Review of the Thermophysical Properties and Applications of Carbon-Based Hybrid Nanofluids in Solar Thermal Systems. Frontiers in Energy Research. |
2 | [2] Zuo X., Yang W., Zhang Z., An Y. 2022. Experimental Investigation on Photothermal Conversion Properties of Collagen Solution-Based Carbon Black Nanofluid. Case Studies in Thermal Engineering. |
3 | [3] Kumar D., and Kumari S. 2019. Performance Investigation of a Nanofluid-Based Parabolic Trough Solar Collector. Lecture Notes in Mechanical Engineering. |
4 | [4] Gautam P. M., and Chudasama M.K. 2022. “An Experimental Investigation of Parabolic Trough Collector Using Industrial-Grade Multiwall Carbon Nanotube-H2O Based Nanofluid.” International Journal of Engineering, Transactions A: Basics. |
5 | [5] Mwesigye A., and Huan Z.. 2015. Thermal and Thermodynamic Performance of a Parabolic Trough Receiver with Syltherm800-Al₂O₃ Nanofluid as the Heat Transfer Fluid. Energy Procedia. |
6 | [6] Dou L., Ding B., Zhang Q., and Mu M. 2023. Numerical Investigation on the Thermal Performance of Parabolic Trough Solar Collector with Synthetic Oil/Cu Nanofluids. Applied Thermal Engineering. |
7 | [7] Basbous N., Taqi M. and Janan M.A. 2016. Thermal Performances Analysis of a Parabolic Trough Solar Collector Using Different Nanofluids. Proceedings of the International Renewable and Sustainable Energy Conference (IRSEC). |
8 | [8] Borode A., Ahmed N. and Olubambi P. 2019. “A Review of Solar Collectors Using Carbon-Based Nanofluids.” Journal of Cleaner Production. |
9 | [9] Jalilov D., T. Juraev, Ibodullaev A. and Halimov A. 2024. Temperature Distribution in the Receiver Tube of a Parabolic Trough Collector with Nanofluid. Applied Solar Energy (Geliotekhnika). |
10 | [10] Benrezkallah A., Y. Marif M. E. Soudani and A. Aouachir. 2024. Thermal Performance Evaluation of the Parabolic Trough Solar Collector Using Nanofluids: A Case Study in the Desert of Algeria. Case Studies in Thermal Engineering. |
11 | [11] Jalilov D., Juraev, T., and Akhatov, J. (2024). "Investigation of the Sedimentation Process in MWCNT-Based Nanofluids with an Influence of Surfactant." Applied Solar Energy, 60(2), 281–286. |
12 | [12] Akhatov J.S., and Juraev, T.I. (2022). Investigation of thermo-physical properties of nanofluids based on nanoparticles of various materials for solar thermal applications. UNEC Journal of Engineering and Applied Sciences, 2(2), 5–17. |
13 | [13] Gulamova D.D. et al. (2021). Solar Technology Capabilities and Prospects in Ceramic Material Production. Refractories and Industrial Ceramics Vol. 63, No. 4, 378-382. https://doi.org/10.1007/s11148-023-00739-8 |
14 | 14] Gulamova D.D. et al. (2022). "Nanostructured Low-Resistance Ceramics Based on the Bi–Pb–Sr–Ca–Cu–O System Produced by Solar Technology." Refractories and Industrial Ceramics Vol. 63, No. 1, 60-65. https://doi.org/10.1007/s11148-022-00681-1 |
15 | [15] Gulamova D.D. et al. (2021). "Fundamentals and Methodology of the Development of Oxide Material Synthesis Technologies at the Large Solar Furnace (Parkent)." Applied Solar Energy. Applied Solar Energy, 2021, Vol. 57, No. 6, pp. 559–564. https://doi.org/10.3103/S0003701X21060086 |
16 | [16] Barreneche C. et al., “Influence of nanoparticle morphology and its dispersion ability regarding thermal properties of water used as phase change material,” Appl. Therm. Eng.,2018;128:121–126. |
17 | [17] Dudley V. E., “Segs_Ls2_Solar_Collector.Pdf.” pp. 1–140, 1994. |
18 | [18] García-Valladares O. and Velázquez N. “Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers,” Int. J. Heat Mass Transf., 2009, doi: 10.1016/j.ijheatmasstransfer.2008.08.004. |
19 | [19] Padilla R.V., Demirkaya G., Goswami D.Y., Stefanakos E., and Rahman M.M., “Heat transfer analysis of parabolic trough solar receiver,” Appl. Energy, 2011, doi: 10.1016/j.apenergy.2011.07.012. |
20 | [20] James Clerk M. A treatise on electricity and magnetism. 2010. doi: 10.1017/CBO9780511709333. |
21 | [21] Batchelor G.K., “The effect of Brownian motion on the bulk stress in a suspension of spherical particles,” J. Fluid Mech., 1977, doi: 10.1017/S0022112077001062. |
22 | [22] Pak B.C. and Cho Y.I., “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transf., 1998, doi: 10.1080/08916159808946559. |
23 | [23] Xuan Y. and Roetzel W., “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., 2000, doi: 10.1016/S0017-9310(99)00369-5. |
24 | [24] Smith J.M., “Introduction to chemical engineering thermodynamics,” J. Chem. Educ., 1950, doi: 10.1021/ed027p584.3. |
25 | [25] Holman J., Heat Transfer sixth edition. 1998. |
26 | [26] Андерсон Д., Таннехилл Д., and Плетчер Р., “Вычислительная гидромеханика и теплообмен,” in В 2-х т. Т. 2, 1990. |
27 | [27] Versteeg H.K., Malalasekera W., Orsi G., Ferziger J.H., Date A.W., and Anderson J.D., An Introduction to Computational Fluid Dynamics - The Finite Volume Method. 1995. |
28 | [28] Naik P. and Oza K., Python with Spyder, no. November. 2019. |
29 | [29] American A.N. “Draft American National Standard,” J. SMPTE, vol. 83, no. 3, pp. 216–219, 2012, doi: 10.5594/j08812. |