Abstract. Introduction. This study analyzes the theoretical and practical aspects of using renewable energy sources, particularly solar energy, for charging electric vehicles. The research is aimed at developing a sustainable charging infrastructure based on modern technologies and is implemented through the modeling of a hybrid energy system.
Methods and Materials. This study examined the use of solar energy for charging electric vehicles. A mathematical model of a hybrid energy system, consisting of solar panels, a battery management system, and the electrical grid, was developed and simulated using MATLAB and PVsyst software. Energy production based on solar irradiance and demand analysis was conducted. The model helps optimize real-time energy flow and reduces carbon dioxide emissions.
Results. The research results show that hybrid systems based on solar energy significantly reduce energy consumption during electric vehicle charging. According to simulations, most of the generated energy is used directly for charging, while the surplus is stored in batteries or fed into the grid. This approach improves overall energy efficiency and helps reduce carbon emissions. The system’s economic and environmental advantages have been confirmed.
Conclusion. The new technological solutions being developed for electric vehicle charging play an important role in improving energy efficiency and protecting the environment. This study developed a hybrid system integrating standalone solar energy sources with grid power. The proposed system reduces dependence on the grid and ensures stable and environmentally friendly charging operations.
Abstract. Introduction. This study analyzes the theoretical and practical aspects of using renewable energy sources, particularly solar energy, for charging electric vehicles. The research is aimed at developing a sustainable charging infrastructure based on modern technologies and is implemented through the modeling of a hybrid energy system.
Methods and Materials. This study examined the use of solar energy for charging electric vehicles. A mathematical model of a hybrid energy system, consisting of solar panels, a battery management system, and the electrical grid, was developed and simulated using MATLAB and PVsyst software. Energy production based on solar irradiance and demand analysis was conducted. The model helps optimize real-time energy flow and reduces carbon dioxide emissions.
Results. The research results show that hybrid systems based on solar energy significantly reduce energy consumption during electric vehicle charging. According to simulations, most of the generated energy is used directly for charging, while the surplus is stored in batteries or fed into the grid. This approach improves overall energy efficiency and helps reduce carbon emissions. The system’s economic and environmental advantages have been confirmed.
Conclusion. The new technological solutions being developed for electric vehicle charging play an important role in improving energy efficiency and protecting the environment. This study developed a hybrid system integrating standalone solar energy sources with grid power. The proposed system reduces dependence on the grid and ensures stable and environmentally friendly charging operations.
Annotatsiya. Kirish. Ushbu tadqiqotda elektromobillarni quvvatlantirishda qayta tiklanuvchi energiya manbalaridan, xususan quyosh energiyasidan foydalanish imkoniyatlari ilmiy-nazariy va amaliy jihatdan tahlil qilingan. Tadqiqot zamonaviy texnologiyalar asosida barqaror quvvatlantirish infratuzilmasini yaratishga yo‘naltirilgan bo‘lib, gibrid energetika tizimining modellashuvi asosida amalga oshirilgan.
Usul va materiallar: Ushbu tadqiqotda elektromobillarni quvvatlantirishda quyosh energiyasidan foydalanish imkoniyatlari o‘rganildi. Quyosh panellari, akkumulyator boshqaruv tizimi va elektr tarmog‘idan iborat gibrid energiya tizimining matematik modeli ishlab chiqildi va MATLAB hamda PVsyst dasturlarida simulyatsiya qilindi. Quyosh nurlanishi asosida energiya ishlab chiqarish va quvvat talabining tahlili amalga oshirildi. Model real vaqt rejimida energiya oqimini optimallashtirish va karbonat angidrid chiqindilarini kamaytirishga xizmat qiladi.
Natijalar. Tadqiqot natijalari elektromobillarni quvvatlantirishda quyosh energiyasiga asoslangan gibrid tizimlar energiya iste'molini sezilarli kamaytirishini ko‘rsatdi. Simulyatsiyaga ko‘ra, ishlab chiqarilgan energiyaning asosiy qismi to‘g‘ridan-to‘g‘ri quvvatlantirishga, ortiqchasi esa akkumulyatorlarda saqlash yoki tarmoqqa uzatishga sarflanadi. Bu usul umumiy energiya samaradorligini oshirib, uglerod chiqindilarini kamaytirishga yordam beradi. Tizimning iqtisodiy va ekologik ustunliklari isbotlandi.
Xulosa. Elektromobillarni zaryadlash uchun ishlab chiqilayotgan yangi texnologik yechimlar energiya samaradorligini oshirish va atrof-muhitni muhofaza qilishda muhim rol o‘ynaydi. Tadqiqotda mustaqil quyosh manbalari va tarmoq energiyasini birlashtirgan gibrid tizim ishlab chiqildi. Taklif etilgan tizim elektr tarmog‘iga qaramlikni kamaytirib, barqaror va ekologik toza zaryadlash imkoniyatini ta’minlaydi.
Аннотация. Введение. В данном исследовании рассмотрены теоретические и практические аспекты использования возобновляемых источников энергии, в частности солнечной энергии, для зарядки электромобилей. Исследование направлено на создание устойчивой инфраструктуры зарядки на основе современных технологий и реализовано на основе моделирования гибридной энергетической системы.
Методы и материалы В данном исследовании изучено использование солнечной энергии для зарядки электромобилей. Была разработана и смоделирована математическая модель гибридной энергетической системы, состоящей из солнечных панелей, системы управления аккумуляторами и электросети, с использованием программ MATLAB и PVsyst. Проведен анализ выработки энергии на основе солнечной радиации и потребностей в энергии. Модель способствует оптимизации энергетических потоков в реальном времени и снижению выбросов углекислого газа.
Результаты. Результаты исследования показали, что гибридные системы на основе солнечной энергии значительно снижают энергопотребление при зарядке электромобилей. Согласно результатам моделирования, основная часть вырабатываемой энергии используется непосредственно для зарядки, а избыточная энергия накапливается в аккумуляторах или передаётся в сеть. Такой подход повышает общую энергетическую эффективность и способствует снижению выбросов углерода. Экономические и экологические преимущества системы подтверждены.
Вывод. Разрабатываемые новые технологические решения для зарядки электромобилей играют важную роль в повышении энергоэффективности и защите окружающей среды. В данном исследовании разработана гибридная система, интегрирующая автономные солнечные источники энергии с электросетью. Предложенная система снижает зависимость от сети и обеспечивает стабильную и экологически чистую работу зарядных станций.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Esanov T.B. | assistent | Qarshi davlat texnika universiteti |
2 | Ibragimov I.X. | assistent | Qarshi davlat texnika universiteti |
№ | Name of reference |
---|---|
1 | [1] El-Shimy M., El-Saadawi M., Elhenawy Y., & Moussa O. (2023). A comprehensive review of electric vehicle charging stations with solar photovoltaic arrays. Sustainability, 15(10), 8122. https://doi.org/10.3390/su15108122 |
2 | [2] EnergySage. (2024, February 28). Hybrid solar systems: Is grid + storage worth it? EnergySage. https://www.energysage.com/solar/grid-tied-solar-vs-solar-battery-backup/ |
3 | [3] Lalitha G & Kaliyaperumal, Gopal & Nijhawan, Ginni & Praveen, & Tyagi, Lalit & Abood, Ahmed. (2024). Integration Challenges and Solutions for Solar-Powered Electric Vehicle Charging Infrastructure: From Panel to Battery. E3S Web of Conferences. 505. 02001. 10.1051/e3sconf/202450502001. |
4 | [4] Walsh,B. (2024, October 10). Solar power won’t save us. Time. https://time.com/7008695/solar-power-limits/ |
5 | [5] Xiao B., Liang, J. Yan, C. & Chen J. (2023). Optimizing electric vehicle charging with integrated renewable energy sources. Mathematics, 12(17), 2627. https://doi.org/10.3390/math12172627 |
6 | [6] Noorollahi Y., Golshanfard A., Aligholian A., Mohammadi-ivatloo B., Nielsen S., & Hajinezhad A. Sustainable Energy System Planning for an Industrial Zone by Integrating Electric Vehicles as Energy Storage. Journal of Energy Storage, 2020;30:101553. https://doi.org/10.1016/j.est.2020.101553) |
7 | [7] Booysen M. J., Abraha C. J., Rix A. J., & Ndibatya I. Walking on sunshine: Pairing electric vehicles with solar energy for sustainable informal public transport in Uganda. Energy Research & Social Science, 2022; 85:102403. (https://doi.org/10.1016/j.erss.2021.102403) |
8 | [8] Tahir Y., Khan I., Rahman S., Nadeem M. F., Iqbal A., & Xu Y. A state-of-the-art review on topologies and control techniques of solid-state transformers for electric vehicle extreme fast charging. IET Power Electronics, 2021; 14: 1560–1576. (https://doi.org/10.1049/pel2.12141) |
9 | [9] Ma Z., Pesaran A., Gevorgian V., Gwinner D., & Kramer W. Energy Storage, Renewable Power Generation, and the Grid: NREL Capabilities Help to Develop and Test Energy-Storage Technologies. IEEE Electrific Magazine, 2015; 3: 30–40. (https://doi.org/10.1109/MELE.2015.2447972) |
10 | [10] Rodrigues E. M. G., Godina R., Santos S. F., Bizuayehu A. W., Contreras J., & Catalão J. P. S. Energy storage systems supporting increased penetration of renewables in islanded systems. Energy, 2014; 75: 265–280. (https://doi.org/10.1016/j.energy.2014.07.072) |