13

Annotatsiya. Kirish. Jahonda yoqilg‘i energetik resurslarni tejashda, atrof-muhitga chiqadigan issiqxona gazlarini kamaytirishda, aholi va sanoat korxonalarni uzluksiz va ishonchli elektr energiyasi bilan taʼminlashda qayta tiklanadigan energiya manbalari jumladan, shamol energiyasidan foydalanish yetakchi oʻrinlardan birini egallamoqda. Oʻzgaruvchan shamol tezliklarida gorizontal oʻqli shamol energetik qurilmalarni samaradorligini oshirish muhim ahamiyatga ega.

Usul va materiallar. Gorizontal oʻqli shamol turbinalarini modellashtirishda Matlab/Simulink tizimida blok-sxema ishlab chiqilgan. Shamol turbinasi mexanik quvvat, moment va shamol energiyasidan foydalanish koeffitsiyentining shamol tezligi oʻzgarishiga va parraklarni oʻrnatilish burchagiga bogʻliqligi aniqlangan.

Natijalar. Shamol oqimi tezligi 3…12 m/s, parraklarning o‘rnatilish burchagi 0o…10o va rotor aylanish tezligi 7…25 bo‘lganda shamol energetik qurilmasi mos ravishda 0,32…20,6 kW mexanik quvvat va 45,71…821 Nm momentga teng bo‘lishi tadqiq qilingan. Shamol parraklarining optimal oʻrnatilish burchagi 0o ga tengligi modellashtirish orqali aniqlangan.

Xulosa. Quvvati 20,5 kW bo‘lgan gorizontal o‘qli shamol energetik qurilmasi o‘zgaruvchan shamol oqimlarida va parraklarining turli ortilish burchaklarida energetik ko‘rsatgichlarini aniqlash imkonini beradigan modellashtirish blok- sxemasi Matlab/Simulink tizmida ishlab chiqildi. Tadqiqot natijalariga ko‘ra shamol tezligi o‘zgarish diapozoni 3…12 m/s, parraklarning o‘rnatilish burchaklar oraligʻi 0o…10o bo‘lganda rotor aylanish tezligi 7…25 rad/s, turbina mexanik momenti 45,71…821 Nm va turbina mexanik quvvati 0,32…20,6 kW ga teng bo‘lishi aniqlangan. Shamol turbinasi parraklari 0o burchak ostida ornatilgan parraklarning tez aylanuvchanlik koeffitsiyenti optimal 8,1 ga teng bolishi asoslangan.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 22-08-2025
  • Read count 13
  • Date of publication 23-06-2025
  • Main LanguageO'zbek
  • Pages96-102
Ўзбек

Annotatsiya. Kirish. Jahonda yoqilg‘i energetik resurslarni tejashda, atrof-muhitga chiqadigan issiqxona gazlarini kamaytirishda, aholi va sanoat korxonalarni uzluksiz va ishonchli elektr energiyasi bilan taʼminlashda qayta tiklanadigan energiya manbalari jumladan, shamol energiyasidan foydalanish yetakchi oʻrinlardan birini egallamoqda. Oʻzgaruvchan shamol tezliklarida gorizontal oʻqli shamol energetik qurilmalarni samaradorligini oshirish muhim ahamiyatga ega.

Usul va materiallar. Gorizontal oʻqli shamol turbinalarini modellashtirishda Matlab/Simulink tizimida blok-sxema ishlab chiqilgan. Shamol turbinasi mexanik quvvat, moment va shamol energiyasidan foydalanish koeffitsiyentining shamol tezligi oʻzgarishiga va parraklarni oʻrnatilish burchagiga bogʻliqligi aniqlangan.

Natijalar. Shamol oqimi tezligi 3…12 m/s, parraklarning o‘rnatilish burchagi 0o…10o va rotor aylanish tezligi 7…25 bo‘lganda shamol energetik qurilmasi mos ravishda 0,32…20,6 kW mexanik quvvat va 45,71…821 Nm momentga teng bo‘lishi tadqiq qilingan. Shamol parraklarining optimal oʻrnatilish burchagi 0o ga tengligi modellashtirish orqali aniqlangan.

Xulosa. Quvvati 20,5 kW bo‘lgan gorizontal o‘qli shamol energetik qurilmasi o‘zgaruvchan shamol oqimlarida va parraklarining turli ortilish burchaklarida energetik ko‘rsatgichlarini aniqlash imkonini beradigan modellashtirish blok- sxemasi Matlab/Simulink tizmida ishlab chiqildi. Tadqiqot natijalariga ko‘ra shamol tezligi o‘zgarish diapozoni 3…12 m/s, parraklarning o‘rnatilish burchaklar oraligʻi 0o…10o bo‘lganda rotor aylanish tezligi 7…25 rad/s, turbina mexanik momenti 45,71…821 Nm va turbina mexanik quvvati 0,32…20,6 kW ga teng bo‘lishi aniqlangan. Shamol turbinasi parraklari 0o burchak ostida ornatilgan parraklarning tez aylanuvchanlik koeffitsiyenti optimal 8,1 ga teng bolishi asoslangan.

English

Abstract. Introduction. In the global context of conserving fuel and energy resources, reducing greenhouse gas emissions into the atmosphere, and providing reliable and continuous electricity to residential and industrial sectors, renewable energy sources—including wind energy—occupy a leading position. Enhancing the efficiency of horizontal-axis wind energy systems under variable wind speeds is of great importance.

Methods and Materials. A block diagram was developed in the MATLAB/Simulink system for modeling horizontal-axis wind turbines. The relationships between the turbine's mechanical power, torque, wind energy utilization coefficient, and wind speed variations, as well as blade pitch angles, were identified.

Results. It was investigated that, with wind speeds ranging from 3 to 12 m/s, blade pitch angles varying from 0° to 10°, and rotor rotation speeds between 7 and 25 rad/s, the wind energy system produces 0.32 to 20.6 kW of mechanical power and 45.71 to 821 Nm of torque. The optimal blade pitch angle was determined to be 0° through the modeling process.

Conclusion. A MATLAB/Simulink block diagram was developed to model and analyze the performance indicators of a 20.5 kW horizontal-axis wind energy system under variable wind flows and blade pitch angles. According to the research results, for wind speed ranges between 3 and 12 m/s and blade pitch angles from 0° to 10°, the rotor rotation speed is 7 to 25 rad/s, turbine mechanical torque is 45.71 to 821 Nm, and turbine mechanical power is 0.32 to 20.6 kW. It was substantiated that the optimal coefficient of rotational speed for the turbine blades set at a pitch angle of 0° is 8.1.

Русский

Аннотация. Введение. В глобальном масштабе сохранение топливно-энергетических ресурсов, снижение выбросов парниковых газов в атмосферу, а также обеспечение населения и промышленных предприятий надежным и бесперебойным электроснабжением делают возобновляемые источники энергии, включая ветровую энергию, одними из ведущих направлений. Повышение эффективности горизонтально-осевых ветроэнергетических установок при изменяющихся скоростях ветра имеет большое значение.

Методы и материалы. Для моделирования горизонтально-осевых ветровых турбин была разработана блок-схема в системе MATLAB/Simulink. Определена зависимость механической мощности турбины, крутящего момента и коэффициента использования ветровой энергии от изменений скорости ветра и угла установки лопастей.

Результаты. Установлено, что при скорости ветра 3…12 м/с, угле установки лопастей 0°…10° и частоте вращения ротора 7…25 рад/с ветроэнергетическая установка обеспечивает механическую мощность 0,32…20,6 кВт и крутящий момент 45,71…821 Нм. Оптимальный угол установки лопастей был определен как 0° на основе моделирования.

Выводы. В системе MATLAB/Simulink разработана блок-схема моделирования горизонтально-осевой ветроэнергетической установки мощностью 20,5 кВт для анализа ее энергетических характеристик при изменяющихся потоках ветра и углах установки лопастей. Согласно результатам исследования, при диапазоне скорости ветра 3…12 м/с и углах установки лопастей 0°…10° частота вращения ротора составляет 7…25 рад/с, механический момент турбины — 45,71…821 Нм, а механическая мощность турбины — 0,32…20,6 кВт. Доказано, что при установке лопастей под углом 0° оптимальный коэффициент скоростного вращения турбины составляет 8,1.

Author name position Name of organisation
1 Safarov A.B. t.f.f.d., dotsent Qarshi davlat texnika universiteti
2 Sayfiddinov Q.E. doktorant Buxoro davlat texnika universiteti
Name of reference
1 [1] Yevropada shamol energiyasidan foydalanish ko’rsatgichlari va istiqbollari. https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2024-statistics-and-the-outlook-for-2025-2030/
2 [2] Xitoy davlatida shamol energiyasidan foydalanish ko’rsatgichlari va istiqbollari. https://www.statista.com/statistics/950342/china-accumulated-installed-wind-power-capacity/
3 [3] Zakhidov R.A., Kremkov M.V. The wind power potential of Uzbekistan. Applied Solar Energy. volume 51, pp. 336–337(2015).
4 [4] Uzakov G.N., Sednin V.A., Safarov A.B., Mamedov R.A., Khatamov I.A. CFD-Modeling of the Airfoil of the Blades of a Wind Power Plant with a Vertical Axis in the Ansys Fluent System. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2024;67(2):97-114. (In Russ.)
5 [5] O‘zbekiston Respublikasi Prezidentining 22.12.2020 yildagi PQ-4933-son, 23.02.2021 yildagi PQ-5003-son va 18.03.2022 yildagi PQ-169-son qarorlari.
6 [6] Uzakov G.N., Zaxidov R.A., Safarov A.B., Davlonov X.A. Shamol energetikasi/Darslik. -Qarshi. «Intellekt» nashriyoti, 2023. –253 bet.
7 [7] Beldjaatit C., Sebbagh T. Studying, modeling, and simulation of wind turbine using MATLAB/Simulink. Turkish Journal of Electromechanics and Energy, Vol:9, No:1, Page 18-24 (2024)
8 [8] Chong C.H., Rigi A.R., Ali I. Wind turbine modelling and simulation using Matlab/Simulink. IOP Conf. Series: Materials Science and Engineering. The 13th International UNIMAS Engineering Conference 2020
9 [9] Teyabeen A.A. et al: Mathematical modelling of wind turbine power curve. International Journal of Simulation: Systems, Science & Technology, 19(5):15.1-15.13 (2018)
10 [10] Manyonge A.W. Mathematical Modelling of Wind Turbine in a Wind Energy Conversion System: Power Coefficient Analysis. Applied Mathematical Sciences 6(91(2012)):4527-4536 (2012)
11 [11] Osintsev K., Aliukov S., & Shishkov A. (2021). Improvement Dependability of Offshore Horizontal-Axis Wind Turbines by Applying New Mathematical Methods for Calculation the Excess Speed in Case of Wind Gusts. Energies, 14(11), 3085.
12 [12] Moghaddam A. and Doost A. (2013) Technical-economical optimization of horizontal axis wind turbines by means of the genetic algorithm. Natural Science, 5, 1-8.
13 [13] Keyhani A., Ghasemi-Varnamkhasti M., Khanali M. and Abbaszadeh R. (2010) An assessment of wind energy potential as a power generation source in the capital of Iran. Tehran. Energy. 35. 188-201.
Waiting