Metodologiya. Tajribalar laboratoriya sharoitida tayyorlangan sinov stendida oʻtkazildi. Vintning uzunligi 1000 mm, boshlangʻich diametri 55 mm, yakuniy diametri 82.5 mm, α burchagi 20°, 25°, 30° qiymatlarda oʻrganildi. Suv oqimi 1–3 m/s oraligʻida berildi. Samaradorlik η = Pf / Pk formulasiga asosan baholandi. Konussimon vint boʻylab radiusning oʻzgarishi r(x) = r₀ + ((r₁–r₀)/L)x tenglamasi bilan ifodalandi.
Natijalar. Eksperimental natijalarga koʻra: Suv tezligi 2 m/s boʻlganda maksimal samaradorlik (61%) kuzatildi. α = 25° ogʻish burchagi eng maqbul natijani berdi. Konussimon vint silindrsimonga nisbatan 10–12% yuqori moment hosil qildi.
Metodologiya. Tajribalar laboratoriya sharoitida tayyorlangan sinov stendida oʻtkazildi. Vintning uzunligi 1000 mm, boshlangʻich diametri 55 mm, yakuniy diametri 82.5 mm, α burchagi 20°, 25°, 30° qiymatlarda oʻrganildi. Suv oqimi 1–3 m/s oraligʻida berildi. Samaradorlik η = Pf / Pk formulasiga asosan baholandi. Konussimon vint boʻylab radiusning oʻzgarishi r(x) = r₀ + ((r₁–r₀)/L)x tenglamasi bilan ifodalandi.
Natijalar. Eksperimental natijalarga koʻra: Suv tezligi 2 m/s boʻlganda maksimal samaradorlik (61%) kuzatildi. α = 25° ogʻish burchagi eng maqbul natijani berdi. Konussimon vint silindrsimonga nisbatan 10–12% yuqori moment hosil qildi.
Аннотация. Введение. На фоне глобальных климатических изменений и энергетического дефицита использование возобновляемых источников энергии приобретает особую актуальность. Гидроэнергетика является экологически чистым и перспективным источником энергии, однако строительство крупных ГЭС может нанести ущерб экосистемам. В связи с этим возникает необходимость разработки маломощных, недорогих и экологически безопасных установок. Повышение эффективности конического винта Архимеда и сравнительный анализ с цилиндрическим винтом являются актуальной задачей.
Методология. Эксперименты проводились в лабораторных условиях на специально подготовленном стенде. Длина винта составляла 1000 мм, начальный диаметр — 55 мм, конечный — 82,5 мм. Угол наклона α принимал значения 20°, 25° и 30°. Скорость водного потока варьировалась в пределах 1–3 м/с. Эффективность определялась по формуле η = Pf / Pk. Изменение радиуса вдоль винта выражалось уравнением: r(x) = r₀ + ((r₁–r₀)/L)x.
Результаты. Согласно экспериментальным данным, при скорости потока 2 м/с достигнута максимальная эффективность (61%). Угол наклона α = 25° показал наилучший результат. Конический винт создавал на 10–12% больший момент по сравнению с цилиндрическим.
Заключение. Результаты эксперимента показали, что угол наклона α и скорость потока значительно влияют на эффективность турбины Архимеда. Конический винт обеспечивает более высокую мощность, оптимальное распределение потока и больший крутящий момент. Такие турбины рекомендованы для использования в системах с малыми водными ресурсами как энергосберегающие решения.
Abstract. Introduction. Against the backdrop of global climate change and energy shortages, the use of renewable energy sources has become increasingly important. Hydropower is considered an environmentally friendly and promising energy source, but the construction of large-scale hydroelectric power stations can harm ecosystems. Therefore, there is a need for low-capacity, cost-effective, and environmentally safe devices. Improving the efficiency of the conical Archimedean screw turbine and comparing it to the cylindrical screw is a relevant topic.
Methodology. Experiments were conducted under laboratory conditions using a specially prepared test bench. The screw length was 1000 mm, with an initial diameter of 55 mm and a final diameter of 82.5 mm. The inclination angle α was studied at values of 20°, 25°, and 30°. Water flow velocity ranged from 1 to 3 m/s. Efficiency was evaluated using the formula η = Pf / Pk. The variation of the radius along the screw was expressed by: r(x) = r₀ + ((r₁–r₀)/L)x.
Results. According to experimental data: Maximum efficiency (61%) was observed at a flow speed of 2 m/s. An inclination angle of α = 25° gave the most optimal result. The conical screw produced 10–12% more torque than the cylindrical screw.
Conclusion. The experimental results show that both the α angle and flow velocity significantly influence the efficiency of the Archimedean screw turbine. The conical screw offers higher output, better flow distribution, and greater torque. These turbines are recommended as energy-efficient solutions for small water resource systems.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Boynazarov B.B. | t.f.f.d., dotsent | Farg'ona davlat texnika universiteti |
2 | Murodov R.N. | doktorant | Farg'ona davlat texnika universiteti |
3 | Murodov M.X. | t.f.n., dotsent | Namangan Davlat Texnika universiteti |
№ | Name of reference |
---|---|
1 | [1] UNDRR. Global Assessment Report on Disaster Risk Reduction. Available online: https://www.undrr.org/gar2022-our-worldrisk (accessed on 10 December 2022). |
2 | [2] Maji, I.K. Impact of Clean Energy and Inclusive Development on CO2 Emissions in Sub-Saharan Africa. J. Clean. Prod. 2019 |
3 | [3] Ghimire, A. Dahal, D. Kayastha, A. Chitrakar, S. Thapa, B.S. Neopane, H.P. Design of FrancisTurbineforMicroHydropowerApplications. J. Phys. Conf. Ser. 2020 |
4 | [4] Ezra, H. Unsustainable Development in the Mekong: The Price of Hydropower. Consilience 2014. |
5 | [5] Northrup, J.M.; Wittemyer, G. Characterising the Impacts of Emerging Energy Development on Wildlife with an Eye towards Mitigation. Ecol. Lett. 2013. |
6 | [6] Lago LI, Ponta FL, Chen L. Advance and trends in hydrokinetic turbine system. ELSEVIRE online Energy for Sustainable Development, Department of Mechanical Engineering - Engineering Mechanics, Michigan Technological University,USA. |
7 | [7] Murodov R. N., Murodov M. X., Boynazarov B. B. Mavjud gidroturbinalarning turlari va ularning qo‘llanilishi. Mexanika va Texnologiya ilmiy jurnali https://mextex.uz/ |
8 | [8] Williamson S.J., Stark B.H., Brooker J.D. Low Head hydro turbine selection using a multi-criteria analysis. ELSEVIER online: Renewable Energy, Department of Electrical & Electronic Engineering, University of Bristol, UK, 2012. |
9 | [9] Behrouzi F., Maimun A., Nakisa M. Review of Various Designs and Development in Hydropower Turbines. World Academy of Science, Engineering and Technology International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering 2014. |
10 | [10] Murodov R., Kuchqarov A., Boynazarov B., Uzbekov M. Research on the efficiency of using hydro turbines in pumping mode and for electricity generation. Scientific and Technical Journal of NamIET. Vol. 10, Issue 1. 2025. |
11 | [11] Aubin J., Naude I., Bertrand J., Xueres C. Blending of Newtonian and shear-thinning fluid in a tank stirred with a helical screw agitator. Ichem online; Laboratoire de Genie Chimique UMR CNR 5503 - INPT ENSIGC, Toulouse Cedex, France, November 2012. |
12 | [12] Ratchaphon S., Sujate W. and Wiroon M. An Experimental Study of Electricity Generation Using a Horizontal Spiral Turbine Spira M. On the Golden Ratio. CPESE 2016, 2016 3rd International Conference on Power and Energy Systems Engineering September 8-12, 2016 Kitakyushu, Japan. |