15

Abstract: This review examines mathematical models for the integration of Phase Change Materials (PCMs) within building envelopes, focusing on energy efficiency and thermal comfort enhancements from 2013 to 2020. Various modeling strategies, optimization approaches, and experimental validation methods were assessed, highlighting key parameters such as PCM thickness, placement, and melting temperature. The review identifies significant advancements, including parametric analyses, metamodeling techniques, multi-objective optimization frameworks, and innovative performance metrics. Results indicate PCM integration substantially reduces heating and cooling loads, optimizes indoor temperature stability, and improves overall building energy performance. The findings underscore the potential and challenges of PCM implementation, emphasizing the need for further economic analyses and enhanced computational modeling.

Methods and materials: The study reviewed 29 academic papers published between 2013 and 2020, selected based on their relevance to PCM integration into building envelopes. Methodologies involved detailed analysis of parametric studies, simulation-based optimizations (e.g., EnergyPlus, GenOpt, NSGA-II algorithms), metamodeling techniques, and performance validation through experimental setups. Key variables assessed included PCM thermophysical properties, PCM layer thickness and placement, and climatic conditions affecting performance.

Results: The reviewed studies consistently demonstrated PCM's effectiveness in stabilizing indoor temperatures, reducing energy demand, and enhancing thermal comfort. Specific findings showed significant heating energy reductions (up to 23%) with optimized PCM wallboards, notable cooling load decreases in tropical climates, and improved year-round thermal performance. Innovative performance indicators, such as Relative Depth of Activation (RDA) and Time Rate of Activation (TRA), provided new insights into PCM utilization efficiency. However, results also highlighted complexities in accurately modeling PCM behavior and emphasized the importance of tailored PCM selection and integration strategies for different climatic conditions.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 22-08-2025
  • Read count 15
  • Date of publication 23-06-2025
  • Main LanguageIngliz
  • Pages127-135
English

Abstract: This review examines mathematical models for the integration of Phase Change Materials (PCMs) within building envelopes, focusing on energy efficiency and thermal comfort enhancements from 2013 to 2020. Various modeling strategies, optimization approaches, and experimental validation methods were assessed, highlighting key parameters such as PCM thickness, placement, and melting temperature. The review identifies significant advancements, including parametric analyses, metamodeling techniques, multi-objective optimization frameworks, and innovative performance metrics. Results indicate PCM integration substantially reduces heating and cooling loads, optimizes indoor temperature stability, and improves overall building energy performance. The findings underscore the potential and challenges of PCM implementation, emphasizing the need for further economic analyses and enhanced computational modeling.

Methods and materials: The study reviewed 29 academic papers published between 2013 and 2020, selected based on their relevance to PCM integration into building envelopes. Methodologies involved detailed analysis of parametric studies, simulation-based optimizations (e.g., EnergyPlus, GenOpt, NSGA-II algorithms), metamodeling techniques, and performance validation through experimental setups. Key variables assessed included PCM thermophysical properties, PCM layer thickness and placement, and climatic conditions affecting performance.

Results: The reviewed studies consistently demonstrated PCM's effectiveness in stabilizing indoor temperatures, reducing energy demand, and enhancing thermal comfort. Specific findings showed significant heating energy reductions (up to 23%) with optimized PCM wallboards, notable cooling load decreases in tropical climates, and improved year-round thermal performance. Innovative performance indicators, such as Relative Depth of Activation (RDA) and Time Rate of Activation (TRA), provided new insights into PCM utilization efficiency. However, results also highlighted complexities in accurately modeling PCM behavior and emphasized the importance of tailored PCM selection and integration strategies for different climatic conditions.

Русский

Аннотация: В данном обзоре рассматриваются математические модели интеграции материалов с фазовым переходом (МФП) в ограждающие конструкции зданий с целью повышения энергоэффективности и теплового комфорта за период с 2013 по 2020 годы. Оценены различные стратегии моделирования, методы оптимизации и экспериментальные подходы валидации, выделены ключевые параметры: толщина слоя МФП, размещение и температура плавления. Исследование выявило значительные достижения, включая параметрические анализы, методы метамоделирования, многоцелевые рамки оптимизации и инновационные показатели производительности. Результаты показывают, что интеграция МФП существенно снижает тепловые нагрузки на отопление и охлаждение, стабилизирует температуру внутри помещений и улучшает общую энергетическую эффективность зданий. Полученные данные подчеркивают потенциал и сложности применения МФП, отмечая необходимость дальнейших экономических исследований и усовершенствования вычислительных моделей.

Методы и материалы: В исследовании были проанализированы 29 научных статей, опубликованных в период с 2013 по 2020 годы, отобранных по их релевантности к интеграции МФП в ограждающие конструкции зданий. Методологии включали детальный анализ параметрических исследований, оптимизацию на основе симуляций (например, EnergyPlus, GenOpt, алгоритмы NSGA-II), методы метамоделирования и экспериментальные проверки. Основными переменными были термофизические свойства МФП, толщина и расположение слоя МФП, а также климатические условия.

Результаты: Проанализированные исследования последовательно демонстрировали эффективность МФП в стабилизации внутренних температур, снижении энергопотребления и улучшении теплового комфорта. Конкретные результаты показали значительное снижение энергозатрат на отопление (до 23%) при использовании оптимизированных стеновых панелей с МФП, заметное уменьшение нагрузки на охлаждение в тропическом климате и улучшение круглогодичных тепловых характеристик. Инновационные показатели производительности, такие как относительная глубина активации (RDA) и скорость активации (TRA), дали новые представления о степени использования МФП. Вместе с тем результаты также выявили сложности в точном моделировании поведения МФП и подчеркнули важность индивидуального подбора и стратегий интеграции МФП для различных климатических условий.

Ўзбек

Annotatsiya: Kirish. Ushbu sharhda binolarning tashqi devorlariga faza o‘zgarish materiallarini (FOM) integratsiya qilish uchun matematik modellarning 2013 yildan 2020 yilgacha bo‘lgan davrda energiya samaradorligi va issiqlik qulayligini oshirishga qaratilgan tahlili ko‘rib chiqiladi. Turli modellashtirish strategiyalari, optimallashtirish usullari va eksperimental validatsiya yondashuvlari baholandi, asosiy parametrlar sifatida FOM qatlami qalinligi, joylashuvi va erish harorati aniqlab olindi. Tadqiqotda parametrik tahlillar, metamodel yaratish texnikalari, ko‘p maqsadli optimallashtirish tizimlari va innovatsion ishlash ko‘rsatkichlari kabi sezilarli yutuqlar aniqlangan. Natijalar shuni ko‘rsatadiki, FOM integratsiyasi isitish va sovutish yuklarini sezilarli darajada kamaytiradi, bino ichidagi harorat barqarorligini optimallashtiradi va umumiy energiya samaradorligini oshiradi. Olingan natijalar FOM qo‘llashning salohiyati va qiyinchiliklarini ta’kidlaydi hamda qo‘shimcha iqtisodiy tahlillar va takomillashtirilgan hisoblash modellari zarurligini ta’kidlaydi.

Metod va materiallar: Tadqiqotda 2013–2020 yillar oralig‘ida chop etilgan, binolarning tashqi devorlariga FOM integratsiyasi bilan bog‘liq 29 ta ilmiy maqola ko‘rib chiqildi. Metodologiyalar parametrik tadqiqotlarni batafsil tahlil qilish, simulyatsiyaga asoslangan optimallashtirish (masalan, EnergyPlus, GenOpt, NSGA-II algoritmlari), metamodel yaratish usullari va eksperimental tekshiruvlarni o‘z ichiga oldi. Asosiy o‘zgaruvchilar sifatida FOM ning termofizik xossalari, qatlam qalinligi va joylashuvi hamda iqlim sharoitlari ko‘rib chiqildi.

Natijalar: Ko‘rib chiqilgan tadqiqotlar FOM ning ichki haroratni barqarorlashtirish, energiya sarfini kamaytirish va issiqlik qulayligini yaxshilashdagi samaradorligini izchil ko‘rsatdi. Xususan, optimallashtirilgan FOM paneli bilan isitish energiyasi xarajatlarining 23% gacha kamayishi, tropik iqlim sharoitida sovutish yuklarining sezilarli pasayishi va yil davomida termik ko‘rsatkichlarning yaxshilanishi qayd etildi. Innovatsion ko‘rsatkichlar (RDA va TRA) FOM samaradorligini baholash uchun yangi yondashuvlarni taklif qildi. Shu bilan birga, natijalar FOM ning xatti-harakatini aniq modellashtirishdagi murakkabliklarni ko‘rsatdi va turli iqlim sharoitlariga mos FOM ni tanlash va integratsiya qilish strategiyalarining ahamiyatini ta’kidladi.

Name of reference
1 [1] Halimov, A., Lauster, M., & Müller, D. (2019, September). Development and Validation of PCM Models Integrated Into the High Order Building Model of Modelica Library–Aixlib. In Building Simulation 2019 (Vol. 16, pp. 4698-4705). IBPSA.
2 [2] Halimov, A., Lauster, M., & Müller, D. (2019). Validation and integration of a latent heat storage model into building envelopes of a high-order building model for Modelica library AixLib. Energy and Buildings, 202, 109336.
3 [3] Alshuraiaan, B. (2022). Efficient utilization of PCM in building envelope in a hot environment condition. International Journal of Thermofluids, 16, 100205.
4 [4] Lakhdari, Y. A., Chikh, S., & Campo, A. (2020). Analysis of the thermal response of a dual phase change material embedded in a multi-layered building envelope. Applied Thermal Engineering, 179, 115502.
5 [5] Hagenau, M., & Jradi, M. (2021, September). PCM-enhanced building envelope for improved thermal comfort and energy efficiency in danish buildings. In Building Simulation 2021 (Vol. 17, pp. 102-109). IBPSA.
6 [6] Sasic Kalagasidis, A. (2014). A multi-level modelling and evaluation of thermal performance of phase-change materials in buildings. Journal of Building Performance Simulation, 7(4), 289-308.
7 [7] Castell, A., Medrano Martorell, M., & Goia, F. (2018). Modelling envelope components integrating Phase Change Materials (PCMs) with whole-building energy simulation tools: a state of the art.
8 [8] Dardouri, S., Mankai, S., Almoneef, M. M., Mbarek, M., & Sghaier, J. (2023). Energy performance based optimization of building envelope containing PCM combined with insulation considering various configurations. Energy Reports, 10, 895-909.
9 [9] Mechouet, A., Mouhib, T., & Oualim, E. M. (2021, November). Numerical study of thermal and energetic contribution of phase change materials integrated into external building walls. In AIP Conference Proceedings (Vol. 2441, No. 1). AIP Publishing.
10 [10] Abdellatef, Y., Kavgic, M., Ormiston, S., & Evola, G. (2024). Hysteresis model predictions of thermal performance of hempcrete-based walls with phase change materials. Journal of Building Engineering, 84, 108362.
11 [11] Zhang, Y., Jiang, W., Song, J., Xu, L., Li, S., & Hu, L. (2023). A parametric model on thermal evaluation of building envelopes containing phase change material. Applied Energy, 331, 120471.
12 [12] Fiorito, F. (2014). Phase-change materials for indoor comfort improvement in lightweight buildings. A parametric analysis for Australian climates. Energy Procedia, 57.
13 [13] Huang, Y., Niu, J. L., & Chung, T. M. (2014). Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates. Applied energy, 134, 215-228.
14 [14] Ascione, F., Bianco, N., De Masi, R. F., de’Rossi, F., & Vanoli, G. P. (2014). Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season. Applied Energy, 113, 990-1007.
15 [15] Zhou, D., Shire, G. S. F., & Tian, Y. (2014). Parametric analysis of influencing factors in Phase Change Material Wallboard (PCMW). Applied energy, 119, 33-42.
16 [16] Kuznik, F., David, D., Johannes, K., & Roux, J. J. (2011). A review on phase change materials integrated in building walls. Renewable and Sustainable Energy Reviews, 15(1), 379-391.
17 [17] Zahraee, S. M., Chegeni, A., & Rohani, J. M. (2015). Characterization of manufacturing system computer simulation using taguchi method. Jurnal Teknologi (Sciences & Engineering), 72(4).
18 [18] Bastani, A., & Haghighat, F. (2015). Expanding Heisler chart to characterize heat transfer phenomena in a building envelope integrated with phase change materials. Energy and Buildings, 106, 164-174.
19 [19] Kuznik, F., Lopez, J. P. A., Baillis, D., & Johannes, K. (2015). Phase change material wall optimization for heating using metamodeling. Energy and Buildings, 106, 216-224.
20 [20] Navarro, L., de Gracia, A., Castell, A., & Cabeza, L. F. (2015). Thermal behaviour of insulation and phase change materials in buildings with internal heat loads: experimental study. Energy efficiency, 8, 895-904.
21 [21] Lei, J., Yang, J., & Yang, E. H. (2016). Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore. Applied energy, 162, 207-217.
22 [22] Ramakrishnan, S., Wang, X., Alam, M., Sanjayan, J., & Wilson, J. (2016). Parametric analysis for performance enhancement of phase change materials in naturally ventilated buildings. Energy and buildings, 124, 35-45.
23 [23] Souayfane, F., Fardoun, F., & Biwole, P. H. (2016). Phase change materials (PCM) for cooling applications in buildings: A review. Energy and buildings, 129, 396-431.
24 [24] Karaoulis, A. (2017). Investigation of energy performance in conventional and lightweight building components with the use of phase change materials (PCMs): energy savings in summer season. Procedia Environmental Sciences, 38, 796-803.
25 [25] Saffari, M., De Gracia, A., Fernández, C., & Cabeza, L. F. (2017). Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. Applied Energy, 202, 420-434.
26 [26] Zhu, L., Yang, Y., Chen, S., & Sun, Y. (2018). Numerical study on the thermal performance of lightweight temporary building integrated with phase change materials. Applied Thermal Engineering, 138, 35-47.
27 [27] Solgi, E., Hamedani, Z., Fernando, R., Skates, H., & Orji, N. E. (2018). A literature review of night ventilation strategies in buildings. Energy and buildings, 173, 337-352.
28 [28] Li, Z. X., Al-Rashed, A. A., Rostamzadeh, M., Kalbasi, R., Shahsavar, A., & Afrand, M. (2019). Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM. Energy Conversion and Management, 195, 43-56.
29 [29] Plytaria, M. T., Tzivanidis, C., Bellos, E., & Antonopoulos, K. A. (2019). Parametric analysis and optimization of an underfloor solar assisted heating system with phase change materials. Thermal Science and Engineering Progress, 10, 59-72.
30 [30] Yang, L., Liu, Y., Qiao, Y., Liu, J., & Wang, M. (2019). Building envelope with phase change materials. In Zero and Net Zero Energy (pp. 1-24). Rijeka, Croatia: IntechOpen.
31 [31] Bai, L., Xie, J., Farid, M. M., Wang, W., & Liu, J. (2020). Analytical model to study the heat storage of phase change material envelopes in lightweight passive buildings. Building and Environment, 169, 106531.
32 [32] Beemkumar, N., Yuvarajan, D., Arulprakasajothi, M., Elangovan, K., & Arunkumar, T. (2021). Control of room temperature fluctuations in the building by incorporating PCM in the roof. Journal of Thermal Analysis and Calorimetry, 143, 3039-3046.
33 [33] Xu, B., Xie, X., Pei, G., & Chen, X. N. (2020). New view point on the effect of thermal conductivity on phase change materials based on novel concepts of relative depth of activation and time rate of activation: The case study on a top floor room. Applied Energy, 266, 114886.
34 [34] Taylor, R. A., Shoraka, Y., Tehrani, S. S. M., & Nashed, A. (2018). Thermal energy storage for buildings: a merit order review. Annual Review of Heat Transfer, 21.
35 [35] Souayfane, F., Fardoun, F., & Biwole, P. H. (2016). Phase change materials (PCM) for cooling applications in buildings: A review. Energy and buildings, 129, 396-431.
36 [36] Karaoulis, A. (2017). Investigation of energy performance in conventional and lightweight building components with the use of phase change materials (PCMs): energy savings in summer season. Procedia Environmental Sciences, 38, 796-803.
37 [37] Saffari, M., de Gracia, A., Ushak, S., & Cabeza, L. F. (2017). Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. Applied Energy, 206, 1424–1435.
38 [38] Zhu, L., Yang, Y., Chen, S., & Sun, Y. (2018). Numerical study on the thermal performance of lightweight temporary building integrated with phase change materials. Applied Thermal Engineering, 138, 35-47.
39 [39] Solgi, E., Hamedani, Z., Fernando, R., Mohammad Kari, B., & Skates, H. (2019). Thermal performance of phase change material-enhanced building envelopes: A review. Building and Environment, 147, 360–372.
40 [40] Li, Z. X., Al-Rashed, A. A., Rostamzadeh, M., Kalbasi, R., Shahsavar, A., & Afrand, M. (2019). Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM. Energy Conversion and Management, 195, 43-56.
Waiting