Abstract: The thermal stability of nanofluids is critical for applications in energy systems, yet the role of temperature-induced aggregation remains poorly understood. The nanofluids are prepared using a two-step method with 0.5 wt% alumina nanoparticles dispersed in distilled water. TEM analysis shows particles ranging from 10 to 50 nm with mostly spherical shapes. DLS results indicate a uniform suspension with a Z-average hydrodynamic diameter of 103 nm and a narrow size distribution (D10 ≈ 80 nm, D50 ≈ 103 nm, D90 ≈ 154 nm). Zeta potential values at 25 °C, 35 °C, and 45 °C are 49.0 mV, 47.1 mV, and 48.3 mV, respectively, confirming strong electrostatic stability above the ±30 mV threshold. The nanofluids remain stable across the tested temperature range, suggesting minimal risk of agglomeration or sedimentation. These findings support the potential use of Al₂O₃ nanofluids to improve heat transfer in solar thermal systems.
Methods and Materials: The nanofluids are prepared using a two-step method, where 0.5 wt% of Al₂O₃ nanoparticles (Aerodisp W925, 25 wt.% in water) are diluted in distilled water and dispersed using ultrasonic treatment for 2–5 minutes at room temperature. The morphology of the nanoparticles is examined using Transmission Electron Microscopy (TEM), revealing spherical to slightly irregular particles ranging from 10 to 50 nm. For characterization, Dynamic Light Scattering (DLS) and zeta potential measurements are performed using a LiteSizer DLS 500 (Anton Paar) with side-scattering at 90°, conducted at three different temperatures to assess particle size distribution and electrokinetic stability.
Results: DLS analysis shows that the Al₂O₃ nanofluids have a uniform dispersion, with a Z-average hydrodynamic diameter of 103 nm and a narrow size distribution (D10 ≈ 80 nm, D50 ≈ 103 nm, D90 ≈ 154 nm), indicating low polydispersity. Zeta potential values measured at 25 °C, 35 °C, and 45 °C are 49.0 mV, 47.1 mV, and 48.3 mV, respectively, all exceeding the ±30 mV threshold, confirming high colloidal stability. These results suggest that the nanofluids resist agglomeration and sedimentation, maintaining stability across varying thermal conditions and demonstrating strong potential for use in solar thermal systems.
Abstract: The thermal stability of nanofluids is critical for applications in energy systems, yet the role of temperature-induced aggregation remains poorly understood. The nanofluids are prepared using a two-step method with 0.5 wt% alumina nanoparticles dispersed in distilled water. TEM analysis shows particles ranging from 10 to 50 nm with mostly spherical shapes. DLS results indicate a uniform suspension with a Z-average hydrodynamic diameter of 103 nm and a narrow size distribution (D10 ≈ 80 nm, D50 ≈ 103 nm, D90 ≈ 154 nm). Zeta potential values at 25 °C, 35 °C, and 45 °C are 49.0 mV, 47.1 mV, and 48.3 mV, respectively, confirming strong electrostatic stability above the ±30 mV threshold. The nanofluids remain stable across the tested temperature range, suggesting minimal risk of agglomeration or sedimentation. These findings support the potential use of Al₂O₃ nanofluids to improve heat transfer in solar thermal systems.
Methods and Materials: The nanofluids are prepared using a two-step method, where 0.5 wt% of Al₂O₃ nanoparticles (Aerodisp W925, 25 wt.% in water) are diluted in distilled water and dispersed using ultrasonic treatment for 2–5 minutes at room temperature. The morphology of the nanoparticles is examined using Transmission Electron Microscopy (TEM), revealing spherical to slightly irregular particles ranging from 10 to 50 nm. For characterization, Dynamic Light Scattering (DLS) and zeta potential measurements are performed using a LiteSizer DLS 500 (Anton Paar) with side-scattering at 90°, conducted at three different temperatures to assess particle size distribution and electrokinetic stability.
Results: DLS analysis shows that the Al₂O₃ nanofluids have a uniform dispersion, with a Z-average hydrodynamic diameter of 103 nm and a narrow size distribution (D10 ≈ 80 nm, D50 ≈ 103 nm, D90 ≈ 154 nm), indicating low polydispersity. Zeta potential values measured at 25 °C, 35 °C, and 45 °C are 49.0 mV, 47.1 mV, and 48.3 mV, respectively, all exceeding the ±30 mV threshold, confirming high colloidal stability. These results suggest that the nanofluids resist agglomeration and sedimentation, maintaining stability across varying thermal conditions and demonstrating strong potential for use in solar thermal systems.
Аннотация: Тепловая стабильность наножидкостей имеет решающее значение для применения в энергетических системах, однако роль агрегации, вызванной температурой, остаётся недостаточно изученной. Наножидкости приготовлены двухступенчатым методом с использованием 0,5 мас.% наночастиц оксида алюминия, диспергированных в дистиллированной воде. Анализ TEM показывает, что частицы имеют размер от 10 до 50 нм и в основном сферическую форму. Результаты DLS указывают на однородную суспензию с гидродинамическим диаметром по Z-среднему — 103 нм и узким распределением размеров (D10 ≈ 80 нм, D50 ≈ 103 нм, D90 ≈ 154 нм). Значения дзета-потенциала при 25 °C, 35 °C и 45 °C составляют 49,0 мВ, 47,1 мВ и 48,3 мВ соответственно, что подтверждает высокую электростатическую стабильность выше порога ±30 мВ. Наножидкости остаются стабильными в исследуемом температурном диапазоне, что свидетельствует о минимальном риске агломерации и осаждения. Эти результаты подтверждают перспективность использования наножидкостей Al₂O₃ для улучшения теплообмена в солнечных тепловых системах.
Методы и материалы: Наножидкости приготовлены двухступенчатым методом: 0,5 мас.% наночастиц Al₂O₃ (Aerodisp W925, 25 мас.% в воде) разбавлены в дистиллированной воде и обработаны ультразвуком в течение 2–5 минут при комнатной температуре. Морфология частиц изучена методом просвечивающей электронной микроскопии (TEM), показавшим сферическую и слегка неправильную форму частиц размером 10–50 нм. Для характеристики наножидкостей использованы методы динамического светорассеяния (DLS) и измерения дзета-потенциала с помощью прибора LiteSizer DLS 500 (Anton Paar) при боковом рассеянии на 90°, проведённые при трёх температурах.
Результаты: Анализ DLS показывает, что наножидкости Al₂O₃ обладают однородной дисперсией с гидродинамическим диаметром по Z-среднему 103 нм и узким распределением размеров (D10 ≈ 80 нм, D50 ≈ 103 нм, D90 ≈ 154 нм), что указывает на низкую полидисперсность. Значения дзета-потенциала при 25 °C, 35 °C и 45 °C составляют 49,0 мВ, 47,1 мВ и 48,3 мВ соответственно, превышая порог ±30 мВ и подтверждая высокую коллоидную стабильность. Эти данные свидетельствуют о том, что наножидкости устойчивы к агломерации и осаждению, сохраняя стабильность в различных тепловых условиях и демонстрируя высокий потенциал для применения в солнечных тепловых установках.
Annotatsiya: Nanosuyuqliklarning issiqlik barqarorligi energiya tizimlarida qo‘llanilishi uchun muhim omildir, biroq harorat ta’sirida yuzaga keladigan agregatsiya mexanizmi hali to‘liq o‘rganilmagan. Ushbu tadqiqotda nanosuyuqliklar ikki bosqichli usulda, ya’ni 0.5 og‘irlik foizidagi Al₂O₃ zarrachalari distillangan suvda dispersiya qilinib, tayyorlanadi. TEM tahlili zarrachalarning asosan sferik shaklga ega bo‘lib, 10 dan 50 nm gacha o‘zgarishini ko‘rsatadi. DLS natijalari zarrachalar Z-o‘rtacha gidrodinamik diametri 103 nm bo‘lgan, D10 ≈ 80 nm, D50 ≈ 103 nm, D90 ≈ 154 nm bo‘lgan bir xillikda tarqalgan suspenziyani ko‘rsatadi. 25 °C, 35 °C va 45 °C haroratlarda zeta potensial qiymatlari mos ravishda 49.0 mV, 47.1 mV va 48.3 mV ni tashkil etadi, bu esa ±30 mV chegaradan ancha yuqori bo‘lib, kuchli elektrostatik barqarorlikni tasdiqlaydi. Nanosuyuqliklar harorat o‘zgarishlarida ham barqaror holatda qoladi va aglomeratsiya yoki cho‘kish xavfi kamligini bildiradi. Ushbu natijalar Al₂O₃ nanosuyuqliklarini quyosh issiqlik tizimlarida issiqlik uzatishni yaxshilash uchun istiqbolli vosita sifatida qo‘llash mumkinligini ko‘rsatadi.
Usullar va materiallar: Nanosuyuqliklar ikki bosqichli (“Two-step”) usulda tayyorlanadi: 0.5 wt% miqdoridagi Al₂O₃ zarrachalari (Aerodisp W925, 25 wt.% suvda) distillangan suv bilan suyultirilib, xona haroratida 2–5 daqiqa davomida ultratovushli vanna yordamida dispersiya qilinadi. Zarrachalarning morfologiyasi TEM (transmissiyali elektron mikroskopiya) orqali tahlil qilinib, ularning 10–50 nm diapazondagi sferik yoki biroz notekis shaklda ekanligi aniqlanadi. Nanosuyuqliklarni tavsiflash uchun LiteSizer DLS 500 (Anton Paar) asbobida, 90° burchakda yon tomondan tarqatilgan nur asosida, DLS va zeta potensial usullari qo‘llaniladi. O‘lchovlar uch xil haroratda amalga oshiriladi.
Natijalar: DLS tahlili Al₂O₃ nanosuyuqliklarida zarrachalar bir xilda tarqalganini ko‘rsatadi; Z-o‘rtacha gidrodinamik diametri 103 nm bo‘lib, D10 ≈ 80 nm, D50 ≈ 103 nm va D90 ≈ 154 nm ni tashkil qiladi, bu esa past polidisperslikni bildiradi. 25 °C, 35 °C va 45 °C haroratlarda o‘lchangan zeta potensial qiymatlari 49.0 mV, 47.1 mV va 48.3 mV ni tashkil etadi va bu qiymatlar ±30 mV dan yuqori bo‘lib, kuchli kolloid barqarorlikni ko‘rsatadi. Natijalar nanosuyuqliklarning agregatsiya va cho‘kishga chidamli ekanligini va turli harorat sharoitlarida barqaror qolishini ko‘rsatadi, bu esa ularni quyosh issiqlik tizimlarida samarali qo‘llash imkoniyatini beradi.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Jurayev T.. | t.f.f.d., dotsent | O‘zbekiston Fanlar akademiyasi Fizika-texnika instituti |
2 | Axatov .. | t.f.d., prof. | O‘zbekiston Fanlar akademiyasi Fizika-texnika instituti |
3 | Jalilov .. | doktorant | O‘zbekiston Fanlar akademiyasi Fizika-texnika instituti |
4 | Halimov .. | t.f.f.d., dots. | O‘zbekiston Fanlar akademiyasi Fizika-texnika instituti |
№ | Name of reference |
---|---|
1 | [1] ENERGY I. and AGENCY, “World Energy Outlook 2024.” [Online]. Available: https://iea.blob.core.windows.net/assets/60db7f34-da7f-41d7-8232-c0b718463fd0/WorldEnergyOutlook2024.pdf |
2 | [2] Abo-Zahhad E.M., Said Z. and Radwan A.M. Nanofluids for solar thermal systems. 2024. doi: 10.1016/B978-0-443-15483-6.00006-8. |
3 | [3] Dugaria S., Bortolato M. and Del Col D. Nanofluids application in direct absorption solar collectors: Review and numerical model. in ECOS 2016 - Proceedings of the 29th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems, 2016. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084245507&partnerID=40&md5=8c817beed34f8f63348e4054f850fb37 |
4 | [4] Elçioǧlu E.B. and Okutucu-Özyurt T. An experimental study on the dispersion stability of alumina-water nanofluids via particle size distribution and zeta potential measurements. High Temp. - High Press., vol. 45, no. 3, pp. 239 – 250, 2016, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963727279&partnerID=40&md5=e1cca5ca2c85cd68a7a7809e0d2a8e32 |
5 | [5] Singh V., Kumar A., Alam M., Kumar A., Kumar P. and Goyat V. A study of morphology, UV measurements and zeta potential of Zinc Ferrite and Al2O3 nanofluids. in Materials Today: Proceedings, 2022, pp. 1034 – 1039. doi: 10.1016/j.matpr.2022.02.371. |
6 | [6] Farzaneh H., Behzadmehr A. and Samimi A. Analytical investigation of nanofluids dispersion stability,” in Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011, 2011, pp. 539 – 542. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-81455140143&partnerID=40&md5=bdcd7ca51add0d42331a50eff8ad15ed |
7 | [7] Wang J., Li Z., Jia Y., Wang B. and Xu Z. Molecular dynamics simulation of effect of temperature on Cu nanoparticles agglomeration of nanofluids. J. Nanoparticle Res., vol. 23, no. 1, 2021, doi: 10.1007/s11051-020-05131-y. |
8 | [8] Jiang Q., Diao K., Yang M. and Zhu Y. Advances in the Research of Medium Temperature Thermal Stability of Nanofluids; [纳米流体中温热稳定性研究进展]. Cailiao Daobao/Materials Reports, vol. 37, 2023, doi: 10.11896/cldb.23040330. |
9 | [9] Farzaneh H., Behzadmehr A., Yaghoubi M., Samimi A., and Sarvari S.M.H., Stability of nanofluids: Molecular dynamic approach and experimental study. Energy Convers. Manag., vol. 111, pp. 1 – 14, 2016, doi: 10.1016/j.enconman.2015.12.044. |
10 | [10] Zhou L., Zhu J., and Ma H. One-step synthesis of Cu/Therminol VP-1 nanofluids by phase transfer method and their thermal stability and thermophysical properties. J. Nanoparticle Res., vol. 26, no. 2, 2024, doi: 10.1007/s11051-024-05950-3. |
11 | [11] Mudidana R.K., Miditana V., and Rambabu V. Influence of Stability Improvement Methods Over the Thermal Conductivity of Al2O3-DI Nanofluids. Lect. Notes Mech. Eng., pp. 287 – 297, 2025, doi: 10.1007/978-981-97-6732-8_26. |
12 | [12] Xia G., Liu R., and Du M. Analysis of the thermal conductivity of nanofluids. Beijing Gongye Daxue Xuebao/Journal Beijing Univ. Technol., vol. 42, no. 8, pp. 1252 – 1258, 2016, doi: 10.11936/bjutxb2015100029. |
13 | [13] García-Rincón M.A. and Flores-Prieto J.J. Nanofluids stability in flat-plate solar collectors: A review. Sol. Energy Mater. Sol. Cells, vol. 271, 2024, doi: 10.1016/j.solmat.2024.112832. |